Доверительный интервал для оценки среднего (дисперсия известна) в MS EXCEL. Выборки и доверительные интервалы

И др. Все они являются оценками своих теоретических аналогов, которые можно было бы получить, если бы в распоряжении была не выборка, а генеральная совокупность. Но увы, генеральная совокупность – это очень дорого и часто недоступно.

Понятие об интервальном оценивании

Любая выборочная оценка обладает некоторым разбросом, т.к. является случайной величиной, зависящей от значений в конкретной выборке. Стало быть, для более надежных статистических выводов следует знать не только точечную оценку, но и интервал, который с высокой вероятностью γ (гамма) накрывает оцениваемый показатель θ (тета).

Формально, это два таких значения (статистики) T 1 (X) и T 2 (X) , что T 1 < T 2 , для которых при заданном уровне вероятности γ выполняется условие:

Короче, с вероятностью γ или больше истинный показатель находится между точками T 1 (X) и T 2 (X) , которые называются нижней и верхней границей доверительного интервала .

Одним из условий построения доверительных интервалов является его максимальная узость, т.е. он должен быть насколько это возможно коротким. Желание вполне естественно, т.к. исследователь старается точнее локализовать нахождение искомого параметра.

Отсюда следует, что доверительный интервал должен накрывать максимальные вероятности распределения. а сама оценка быть в центре.

То бишь вероятность отклонения (истинного показателя от оценки) в большую сторону равна вероятности отклонения в меньшую сторону. Следует также отметить, что для несимметричных распределений интервал справа не равен интервалу слева.

По рисунку выше отчетливо видно, что чем больше доверительная вероятность, тем шире интервал – прямая зависимость.

Это была небольшая вводная часть в теорию интервального оценивания неизвестных параметров. Перейдем к нахождению доверительных границ для математического ожидания.

Доверительный интервал для математического ожидания

Если исходные данные распределены по , то и среднее будет нормальной величиной. Это следует из того правила, что линейная комбинация нормальных величин также имеет нормальное распределение. Следовательно, для расчета вероятностей мы могли бы использовать математический аппарат нормального закона распределения.

Однако для этого потребуется знать два параметра – матожидание и дисперсию, которые обычно не известны. Можно, конечно, вместо параметров использовать оценки (среднюю арифметическую и ), но тогда распределение средней будет не совсем нормальным, оно будет немного приплюснуто книзу. Этот факт ловко подметил гражданин Уильям Госсет из Ирландии, опубликовав свое открытие в мартовском выпуске журнала «Biometrica» за 1908 год. В целях конспирации Госсет подписался Стьюдентом. Так появилось t-распределение Стьюдента.

Однако нормальное распределение данных, использовавшееся К. Гауссом при анализе ошибок астрономических наблюдений, в земной жизни встречается крайне редко и установить это довольно сложно (для высокой точности необходимо порядка 2 тысяч наблюдений). Поэтому предположение о нормальности лучше всего отбросить и использовать методы, не зависящие от распределения исходных данных.

Возникает вопрос: каково же распределение средней арифметической, если оно рассчитано по данным неизвестного распределения? Ответ дает известная в теории вероятностей Центральная предельная теорема (ЦПТ). В математике существует несколько ее вариантов (на протяжении долгих лет формулировки уточнялись), но все они, грубо говоря, сводятся к утверждению, что сумма большого количества независимых случайных величин подчиняется нормальному закону распределения.

При расчете средней арифметической как раз используется сумма случайных величин. Отсюда получается, что среднее арифметическое имеет нормальное распределение, у которого матожидание – это матожидание исходных данных, а дисперсия – .

Умные люди умеют доказывать ЦПТ, но мы в этом убедимся с помощью эксперимента, проведенного в Excel. Смоделируем выборку из 50-ти равномерно распределенных случайных величин (с помощью функции Excel СЛУЧМЕЖДУ). Затем сделаем 1000 таких выборок и для каждой рассчитаем среднюю арифметическую. Посмотрим на их распределение.

Видно, что распределение средней близко к нормальному закону. Если объем выборок и их количество сделать еще больше, то сходство будет еще лучше.

Теперь, когда мы воочию убедились в справедливости ЦПТ, можно, используя , рассчитать доверительные интервалы для средней арифметической, которые с заданной вероятностью накрывают истинное среднее или математическое ожидание.

Для установления верхней и нижней границы требуется знать параметры нормального распределения. Как правило, их нет, поэтому используют оценки: среднюю арифметическую и выборочную дисперсию . Повторюсь, такой способ дает хорошее приближение только при больших выборках. Когда выборки малые, часто рекомендуют использовать распределение Стьюдента. Не верьте! Распределение Стьюдента для средней бывает только тогда, когда исходные данные имеют нормальное распределение, то есть почти никогда. Поэтому лучше сразу поставить минимальную планку по количеству необходимых данных и использовать асимптотически корректные методы. Говорят, достаточно 30 наблюдений. Берите 50 – не ошибетесь.

T 1,2 – нижняя и верхняя граница доверительного интервала

– выборочное среднее арифметическое

s 0 – среднее квадратичное отклонение по выборке (несмещенное)

n – размер выборки

γ – доверительная вероятность (обычно равна 0,9, 0,95 или 0,99)

c γ =Φ -1 ((1+γ)/2) – обратное значение функции стандартного нормального распределения. По-простому говоря, это количество стандартных ошибок от средней арифметической до нижней или верхней границы (указанным трем вероятностями соответствуют значения 1,64, 1,96 и 2,58).

Суть формулы в том, что берется среднее арифметическое и далее от нее откладывается некоторое количество (с γ ) стандартных ошибок (s 0 /√n ). Все известно, бери и считай.

До массового использования ПЭВМ для получения значений функции нормального распределения и обратной ей использовали . Их и сейчас используют, но эффективнее обратиться к готовым формулам Excel. Все элементы из формулы выше ( , и ) можно легко рассчитать в Excel. Но есть и готовая формула для расчета доверительного интервала – ДОВЕРИТ.НОРМ . Ее синтаксис следующий.

ДОВЕРИТ.НОРМ(альфа;стандартное_откл;размер)

альфа – уровень значимости или доверительный уровень, который в принятых выше обозначениях равен 1- γ, т.е. вероятность того, что математическое ожидание окажется за пределами доверительного интервала. При доверительной вероятности 0,95, альфа равно 0,05 и т.д.

стандартное_откл – среднее квадратичное отклонение выборочных данных. Стандартную ошибку рассчитывать не нужно, Excel сам разделит на корень из n.

размер – размер выборки (n).

Результат функции ДОВЕРИТ.НОРМ – это второе слагаемое из формулы расчета доверительного интервала, т.е. полуинтервал. Соответственно, нижняя и верхняя точка – это среднее ± полученное значение.

Таким образом, можно построить универсальный алгоритм расчета доверительных интервалов для средней арифметической, который не зависит от распределения исходных данных. Платой за универсальность является его асимптотичность, т.е. необходимость использования относительно больших выборок. Однако в век современных технологий собрать нужное количество данных обычно не представляет трудностей.

Проверка статистических гипотез с помощью доверительного интервала

{module 111}

Одной из главных задач, решаемых в статистике, является . Ее суть вкратце такова. Выдвигается предположение, например, что матожидание генеральной совокупности равно какому-то значению. Затем строится распределение выборочных средних, которые могут наблюдаться при данном матожидании. Далее смотрят, в каком месте этого условного распределения находится реальная средняя. Если она выходит за допустимые пределы, то появление такого среднего очень маловероятно, а при однократном повторении эксперимента почти невозможно, что противоречит выдвинутой гипотезе, которая успешно отклоняется. Если же среднее не выходит за критический уровень, то гипотеза не отклоняется (но и не доказывается!).

Так вот с помощью доверительных интервалов, в нашем случае для матожидания, также можно проверять некоторые гипотезы. Это очень просто сделать. Допустим, средняя арифметическая по некоторой выборке равна 100. Проверяется гипотеза о том, что матожидание равно, допустим, 90. То есть, если поставить вопрос примитивно, то он звучит так: может ли такое быть, чтобы при истинном значении средней равной 90, наблюдаемая средняя оказалась равна 100?

Для ответа на этот вопрос дополнительно потребуется информация о среднем квадратичном отклонении и размере выборки. Допустим среднеквадратичное отклонение равно 30, а количество наблюдений 64 (чтобы легко извлечь корень). Тогда стандартная ошибка средней равна 30/8 или 3,75. Для расчета 95% доверительного интервала потребуется отложить в обе стороны от средней по две стандартные ошибки (точнее, по 1,96). Доверительный интервал получится примерно 100±7,5 или от 92,5 до 107,5.

Далее рассуждения следующие. Если проверяемое значение попадает в доверительный интервал, то оно не противоречит гипотезе, т.к. укладывается в пределы случайных колебаний (с вероятностью 95%). Если проверяемая точка выходит за пределы доверительного интервала, то вероятность такого события очень маленькая, во всяком случае ниже допустимого уровня. Значит, гипотезу отклоняют, как противоречащую наблюдаемым данным. В нашем случае гипотеза о матожидании находится за пределами доверительного интервала (проверяемое значение 90 не входит в интервал 100±7,5), поэтому ее следует отклонить. Отвечая на примитивный вопрос выше, следует сказать: нет не может, во всяком случае такое случается крайне редко. Часто при этом указывают конкретную вероятность ошибочного отклонения гипотезы (p-level), а не заданный уровень, по которому строился доверительный интервал, но об этом в другой раз.

Как видим, построить доверительный интервал для среднего (или математического ожидания) несложно. Главное, уловить суть, а дальше дело пойдет. На практике в большинстве случаев используются 95% доверительный интервал, который имеет в ширину примерно две стандартные ошибки по обе стороны от средней.

На этом пока все. Всех благ!

Доверительный интервал (ДИ; в англ, confidence interval - CI) полученный в исследовании при выборке даёт меру точности (или неопределённости) результатов исследования, для того чтобы делать выводы о популяции всех таких пациентов (генеральная совокупность). Правильное определение 95% ДИ можно сформулировать так: 95% таких интервалов будет содержать истинную величину в популяции. Несколько менее точна такая интерпретация: ДИ - диапазон величин, в пределах которого можно на 95% быть уверенным в том, что он содержит истинную величину. При использовании ДИ акцент делается на определении количественного эффекта, в противоположность величине Р, которая получается в результате проверки статистической значимости. Величина Р не оценивает никакого количества, а служит скорее мерой силы свидетельства против нулевой гипотезы «никакого эффекта». Величина Р сама по себе не говорит нам ничего ни о величине различия, ни даже о его направлении. Поэтому самостоятельные величины Р абсолютно неинформативны в статьях или рефератах. В отличие от них ДИ указывает и на количество эффекта, представляющего непосредственный интерес, например на полезность лечения, и на силу доказательств. Поэтому ДИ непосредственно имеет отношение к практике ДМ.

Подход оценки к статистическому анализу, иллюстрируемый ДИ, направлен на измерение количества интересующего нас эффекта (чувствительность диагностического теста, частота прогнозируемых случаев, сокращение относительного риска при лечении и т.д.), а также на измерение неопределённости в этом эффекте. Чаще всего ДИ - диапазон величин по обе стороны оценки, в котором, вероятно, лежит истинная величина, и можно быть уверенным в этом на 95%. Соглашение использовать 95% вероятность произвольно, также как и величину Р <0,05 для оценки статистической значимости, и авторы иногда используют 90% или 99% ДИ. Заметим, что слово «интервал» означает диапазон величин и поэтому стоит в единственном числе. Две величины, которые ограничивают интервал, называются «доверительными пределами».

ДИ основан на идее, что то же самое исследование, выполненное на других выборках пациентов, не привело бы к идентичным результатам, но что их результаты будут распределены вокруг истинной, однако неизвестной величины. Иными словами, ДИ описывает это как «вариабельность, зависящую от выборки». ДИ не отражает дополнительную неопределённости, обусловленную другими причинами; в частности, он не включает влияние селективной потери пациентов при отслеживании, плохого комплайнса или неточного измерения исхода, отсутствия «ослепления» и т.д. ДИ, таким образом, всегда недооценивает общее количество неопределённости.

Вычисление доверительного интервала

Таблица А1.1. Стандартные ошибки и доверительные интервалы для некоторых клинических измерений

Обычно ДИ вычисляют из наблюдаемой оценки количественного показателя, такого, как различие (d) между двумя пропорциями, и стандартной ошибки (SE) в оценке этого различия. Приблизительный 95% ДИ, получаемый таким образом, - d ± 1,96 SE. Формула изменяется согласно природе меры исхода и охвату ДИ. Например, в рандомизированном плацебо-контролируемом испытании бесклеточной коклюшной вакцины коклюш развивался у 72 из 1670 (4,3%) младенцев, получивших вакцину, и у 240 из 1665 (14,4%) в группе контроля. Различие в процентах, известное как абсолютное снижение риска, составляет 10,1%. SE этого различия равна 0,99%. Соответственно 95% ДИ составляет 10,1% + 1,96 х 0,99%, т.е. от 8,2 до 12,0.

Несмотря на разные философские подходы, ДИ и тесты на статистическую значимость тесно связаны математически.

Таким образом, величина Р «значимая», т.е. Р <0,05 соответствует 95% ДИ, который исключает величину эффекта, указывающую на отсутствие различия. Например, для различия между двумя средними пропорциями это ноль, а для относительного риска или отношения шансов - единица. При некоторых обстоятельствах эти два подхода могут быть не совсем эквивалентны. Преобладающая точка зрения: оценка с помощью ДИ - предпочтительный подход к суммированию результатов исследования, но ДИ и величина Р взаимодополняющи, и во многих статьях используются оба способа представления результатов.

Неопределенность (неточность) оценки, выражаемая в ДИ, в большой степени связана с квадратным корнем из размера выборки. Маленькие выборки предоставляют меньше информации, чем большие, и ДИ соответственно шире в меньшей выборке. Например, статья, сравнивающая характеристики трёх тестов, которые применяются для диагностики инфекции Helicobacter pylori , сообщила о чувствительности дыхательной пробы с мочевиной 95,8% (95% ДИ 75-100). В то время как число 95,8% выглядит внушительно, маленькая выборка из 24 взрослых пациентов с Я. pylori означает, что имеется значительная неопределенность в этой оценке, как показывает широкий ДИ. Действительно, нижний предел 75% намного ниже, чем оценка 95,8%. Если бы такая же чувствительность наблюдалась в выборке 240 человек, то 95% ДИ составлял бы 92,5-98,0, давая больше гарантий, что тест высокочувствителен.

В рандомизированных контролируемых испытаниях (РКИ) незначимые результаты (т.е. те, где Р >0,05) особенно подвержены неверному толкованию. ДИ особенно полезен здесь, поскольку он показывает, насколько совместимы результаты с клинически полезным истинным эффектом. Например, в РКИ, сравнивающем наложение анастомоза швом и скрепками на толстой кишке , раневая инфекция развилась у 10,9% и 13,5% пациентов соответственно (Р = 0,30). 95% ДИ для этого различия составляет 2,6% (от -2 до +8). Даже в этом исследовании, включавшем 652 пациента, остаётся вероятность, что существует умеренное различие в частоте инфекций, возникающих вследствие этих двух процедур. Чем меньше исследование, тем больше неуверенность. Сунг и соавт. выполнили РКИ, чтобы сравнить инфузию октреотида со срочной склеротерапией при остром кровотечении из варикозно-расширенных вен на 100 пациентах. В группе октреотида частота остановки кровотечения составила 84%; в группе склеротерапии - 90%, что даёт Р = 0,56. Заметим, что показатели продолжающегося кровотечения аналогичны таковым при раневой инфекции в упомянутом исследовании. В этом случае, однако, 95% ДИ для различия вмешательств равен 6% (от -7 до +19). Этот интервал весьма широк по сравнению с 5% различием, которое представляло бы клинический интерес. Ясно, что исследование не исключает значительной разницы в эффективности. Поэтому заключение авторов «инфузия октреотида и склеротерапия одинаково эффективны при лечении кровотечения из варикозно-расширенных вен» определённо невалидно. В подобных случаях, когда, как здесь, 95% ДИ для абсолютного снижения риска (АСР; absolute risk reduction - ARR, англ.) включает ноль, ДИ для ЧПЛП (NNT - number needed to treat, англ.) является довольно затруднительным для толкования. ЧПЛП и его ДИ получают из величин, обратных АСР (умножая их на 100, если эти величины даны в виде процентов). Здесь мы получаем ЧПЛП = 100: 6 = 16,6 с 95% ДИ от -14,3 до 5,3. Как видно из сноски «d» в табл. А1.1, этот ДИ включает величины ЧПЛП от 5,3 до бесконечности и ЧПЛВ от 14,3 до бесконечности.

ДИ можно построить для большинства обычно употребляемых статистических оценок или сравнений. Для РКИ он включает разность между средними пропорциями, относительными рисками, отношениями шансов и ЧПЛП. Аналогично ДИ можно получить для всех главных оценок, сделанных в исследованиях точности диагностических тестов - чувствительности, специфичности, прогностической значимости положительного результата (все они являются простыми пропорциями), и отношения правдоподобия - оценок, получаемых в метаанализах и исследованиях типа сравнения с контролем. Компьютерная программа для персональных компьютеров, которая покрывает многие из этих способов использования ДИ, доступна со вторым изданием «Statistics with Confidence». Макросы для вычисления ДИ для пропорций бесплатно доступны для Excel и статистических программ SPSS и Minitab на http://www.uwcm.ac.uk/study/medicine/epidemiology_ statistics/research/statistics/proportions, htm.

Множественные оценки эффекта лечения

В то время как построение ДИ желательно для первичных результатов исследования, они не обязательны для всех результатов. ДИ касается клинически важных сравнений. Например, при сравнении двух групп правилен тот ДИ, что построен для различия между группами, как показано выше в примерах, а не ДИ, который можно построить для оценки в каждой группе. Мало того, что бесполезно давать отдельные ДИ для оценок в каждой группе, это представление может вводить в заблуждение. Точно так же правильный подход при сравнении эффективности лечения в различных подгруппах - сравнение двух (или более) подгрупп непосредственно. Неправильно предполагать, что лечение эффективно только в одной подгруппе, если ее ДИ исключает величину, соответствующую отсутствию эффекта, а другие - нет . ДИ полезны также при сравнении результатов в нескольких подгруппах. На рис. А 1.1 показан относительный риск эклампсии у женщин с преэклампсией в подгруппах женщин из плацебо-контролируемого РКИ сульфата магния.

Рис. А1.2. Лесной график показывает результаты 11 рандомизированных клинических испытаний бычьей ротавирусной вакцины для профилактики диареи в сравнении с плацебо. При оценке относительного риска диареи использован 95% доверительный интервал. Размер чёрного квадрата пропорционален объёму информации. Кроме того, показана суммарная оценка эффективности лечения и 95% доверительного интервала (обозначается ромбом). В метаанализе использована модель случайных эффектов превышает некоторые предварительно установленные; например, это может быть размер, использованный при вычислении величины выборки. В соответствии с более строгим критерием весь диапазон ДИ должен показывать пользу, превышающую предустановленный минимум.

Мы уже обсуждали ошибку, когда отсутствие статистической значимости принимают как указание на то, что два способа лечения одинаково эффективны. Столь же важно не уравнивать статистическую значимость с клинической важностью. Клиническую важность можно предполагать, когда результат статистически значим и величина оценки эффективности лечения

Исследования могут показать, значимы ли результаты статистически и какие из них клинически важны, а какие - нет. На рис. А1.2 приведены результаты четырёх испытаний, для которых весь ДИ <1, т.е. их результаты статистически значимы при Р <0,05 , . После высказанного предположения о том, что клинически важным различием было бы сокращение риска диареи на 20% (ОР = 0,8), все эти испытания показали клинически значимую оценку сокращения риска, и лишь в исследовании Treanor весь 95% ДИ меньше этой величины. Два других РКИ показали клинически важные результаты, которые не были статистически значимыми. Обратите внимание, что в трёх испытаниях точечные оценки эффективности лечения были почти идентичны, но ширина ДИ различалась (отражает размер выборки). Таким образом, по отдельности доказательная сила этих РКИ различна.

Цель – научить студентов алгоритмам вычисления доверительных интервалов статистических параметров.

При статистической обработке данных вычисленные средняя арифметическая, коэффициент вариации, коэффициент корреляции, критерии различия и другие точечные статистики должны получить количественные границы доверия, которые обозначают возможные колебания показателя в меньшую и большую стороны в пределах доверительного интервала.

Пример 3.1 . Распределение кальция в сыворотке крови обезьян, как было установлено ранее, характеризуется следующими выборочными показателями: = 11,94 мг%;= 0,127 мг%;n = 100. Требуется определить доверительный интервал для генеральной средней () при доверительной вероятностиP = 0,95.

Генеральная средняя находится с определенной вероятностью в интервале:

, где – выборочная средняя арифметическая;t – критерий Стьюдента; – ошибка средней арифметической.

По таблице «Значения критерия Стьюдента» находим значение при доверительной вероятности 0,95 и числе степеней свободы k = 100-1 = 99. Оно равно 1,982. Вместе со значениями среднего арифметического и статистической ошибки подставляем его в формулу:

или 11,69
12,19

Таким образом, с вероятностью 95%, можно утверждать, что генеральная средняя данного нормального распределения находится между 11,69 и 12,19 мг%.

Пример 3.2 . Определите границы 95%-ного доверительного интервала для генеральной дисперсии () распределения кальция в крови обезьян, если известно, что
= 1,60, приn = 100.

Для решения задачи можно воспользоваться следующей формулой:

Где – статистическая ошибка дисперсии.

Находим ошибку выборочной дисперсии по формуле:
. Она равна 0,11. Значениеt - критерия при доверительной вероятности 0,95 и числе степеней свободы k = 100–1 = 99 известно из предыдущего примера.

Воспользуемся формулой и получим:

или 1,38
1,82

Более точно доверительный интервал генеральной дисперсии можно построить с применением (хи-квадрат) - критерия Пирсона. Критические точки для этого критерия приводятся в специальной таблице. При использовании критериядля построения доверительного интервала применяют двусторонний уровень значимости. Для нижней границы уровень значимости рассчитывается по формуле
, для верхней –
. Например, для доверительного уровня= 0,99= 0,010,= 0,990. Соответственно по таблице распределения критических значений, при рассчитанных доверительных уровнях и числе степеней свободыk = 100 – 1= 99, найдем значения
и
. Получаем
равно 135,80, а
равно70,06.

Чтобы найти доверительные границы генеральной дисперсии с помощью воспользуемся формулами: для нижней границы
, для верхней границы
. Подставим данные задачи найденные значенияв формулы:
= 1,17;
= 2,26. Таким образом, при доверительной вероятностиP = 0,99 или 99% генеральная дисперсия будет лежать в интервале от 1,17 до 2,26 мг% включительно.

Пример 3.3 . Среди 1000 семян пшеницы из поступившей на элеватор партии обнаружено 120 семян зараженных спорыньей. Необходимо определить вероятные границы генеральной доли зараженных семян в данной партии пшеницы.

Доверительные границы для генеральной доли при всех возможных ее значениях целесообразно определять по формуле:

,

Где n – число наблюдений; m – абсолютная численность одной из групп; t – нормированное отклонение.

Выборочная доля зараженных семян равна
или 12%. При доверительной вероятностиР = 95% нормированное отклонение (t -критерий Стьюдента при k =
)t = 1,960.

Подставляем имеющиеся данные в формулу:

Отсюда границы доверительного интервала равны= 0,122–0,041 = 0,081, или 8,1%;= 0,122 + 0,041 = 0,163, или 16,3%.

Таким образом, с доверительной вероятностью 95% можно утверждать, что генеральная доля зараженных семян находится между 8,1 и 16,3%.

Пример 3.4 . Коэффициент вариации, характеризующий варьирование кальция (мг%) в сыворотке крови обезьян, оказался равным 10,6%. Объем выборки n = 100. Необходимо определить границы 95%-ного доверительного интервала для генерального параметра Cv .

Границы доверительного интервала для генерального коэффициента вариации Cv определяются по следующим формулам:

и
, гдеK промежуточная величина, вычисляемая по формуле
.

Зная, что при доверительной вероятности Р = 95% нормированное отклонение (критерий Стьюдента при k =
)t = 1,960, предварительно рассчитаем величину К:

.

или 9,3%

или 12,3%

Таким образом, генеральный коэффициент вариации с доверительной вероятностью 95% лежит в интервале от 9,3 до 12,3%. При повторных выборках коэффициент вариации не превысит 12,3% и не окажется ниже 9,3% в 95 случаях из 100.

Вопросы для самоконтроля:

Задачи для самостоятельного решения.

1. Средний процент жира в молоке за лактацию коров холмогорских помесей был следующим: 3,4; 3,6; 3,2; 3,1; 2,9; 3,7; 3,2; 3,6; 4,0; 3,4; 4,1; 3,8; 3,4; 4,0; 3,3; 3,7; 3,5; 3,6; 3,4; 3,8. Установите доверительные интервалы для генеральной средней при доверительной вероятности 95% (20 баллов).

2. На 400 растениях гибридной ржи первые цветки появились в среднем на 70,5 день после посева. Среднее квадратическое отклонение было 6,9 дня. Определите ошибку средней и доверительные интервалы для генеральной средней и дисперсии при уровне значимости W = 0,05 и W = 0,01 (25 баллов).

3. При изучении длины листьев 502 экземпляров садовой земляники были получены следующие данные: = 7,86 см; σ = 1,32 см, =± 0,06 см. Определите доверительные интервалы для средней арифметической генеральной совокупности с уровнями значимости 0,01; 0,02; 0,05. (25 баллов).

4. При обследовании 150 взрослых мужчин средний рост был равен 167 см, а σ = 6 см. В каких пределах находится генеральная средняя и генеральная дисперсия с доверительной вероятностью 0,99 и 0,95? (25 баллов).

5. Распределение кальция в сыворотке крови обезьян характеризуется следующими выборочными показателями: = 11,94 мг%, σ = 1,27, n = 100. Постройте 95%-ный доверительный интервал для генеральной средней этого распределения. Рассчитайте коэффициент вариации (25 баллов).

6. Было изучено общее содержание азота в плазме крови крыс-альбиносов в возрасте 37 и 180 дней. Результаты выражены в граммах на 100 см 3 плазмы. В возрасте 37 дней 9 крыс имели: 0,98; 0,83; 0,99; 0,86; 0,90; 0,81; 0,94; 0,92; 0,87. В возрасте 180 дней 8 крыс имели: 1,20; 1,18; 1,33; 1,21; 1,20; 1,07; 1,13; 1,12. Установите доверительные интервалы для разницы с доверительной вероятностью 0,95 (50 баллов).

7. Определите границы 95%-ного доверительного интервала для генеральной дисперсии распределения кальция (мг%) в сыворотке крови обезьян, если для этого распределения объем выборки n = 100, статистическая ошибка выборочной дисперсии s σ 2 = 1,60 (40 баллов).

8. Определите границы 95%-ного доверительного интервала для генеральной дисперсии распределения 40 колосков пшеницы по длине (σ 2 = 40, 87 мм 2). (25 баллов).

9. Курение считают основным фактором, предрасполагающим к обструктивным заболеваниям легких. Пассивное курение таким фактором не считается. Ученые усомнились в безвредности пассивного курения и исследовали проходимость дыхательных путей у некурящих, пассивных и активных курильщиков. Для характеристики состояния дыхательных путей взяли один из показателей функции внешнего дыхания – максимальную объемную скорость середины выдоха. Уменьшение этого показателя – признак нарушения проходимости дыхательных путей. Данные обследования приведены в таблице.

Число обследованных

Максимальная объемная скорость середины выдоха, л/с

Стандартное отклонение

Некурящие

работают в помещении, где не курят

работают в накуренном помещении

Курящие

выкуривающие небольшое число сигарет

выкуривающие среднее число сигарет

выкуривающие большое число сигарет

По данным таблицы найдите 95% доверительные интервалы для генеральной средней и генеральной дисперсии для каждой из групп. В чем заключаются различия между группами? Результаты представьте графически (25 баллов).

10. Определите границы 95%-ного и 99%-ного доверительного интервала для генеральной дисперсии численности поросят в 64 опоросах, если статистическая ошибка выборочной дисперсии s σ 2 = 8, 25 (30 баллов).

11. Известно, что средняя масса кроликов составляет 2,1 кг. Определите границы 95%-ного и 99%-ного доверительного интервала для генеральной средней и дисперсии при n = 30, σ = 0,56 кг (25 баллов).

12. У 100 колосьев измеряли озерненность колоса (Х ), длину колоса (Y ) и массу зерна в колосе (Z ). Найти доверительные интервалы для генеральной средней и дисперсии при P 1 = 0,95, P 2 = 0,99, P 3 = 0,999, если = 19, = 6,766 см, = 0,554 г; σ x 2 = 29, 153, σ y 2 = 2, 111, σ z 2 = 0, 064. (25 баллов).

13. В отобранных случайным образом 100 колосьях озимой пшеницы подсчитывалось число колосков. Выборочная совокупность характеризовалась следующими показателями: = 15 колосков и σ = 2,28 шт. Определите, с какой точностью получен средний результат () и постройте доверительный интервал для генеральной средней и дисперсии при 95% и 99% уровнях значимости (30 баллов).

14. Число ребер на раковинах ископаемого моллюска Orthambonites calligramma :

Известно, что n = 19, σ = 4,25. Определите границы доверительного интервала для генеральной средней и генеральной дисперсии при уровне значимости W = 0,01 (25 баллов).

15. Для определения удоев молока на молочно-товарной ферме ежедневно определялась продуктивность 15 коров. По данным за год каждая корова давала в среднем в сутки следующее количество молока (л): 22; 19; 25; 20; 27; 17; 30; 21; 18; 24; 26; 23; 25; 20; 24. Постройте доверительные интервалы для генеральной дисперсии и средней арифметической. Можно ли ожидать, что среднегодовой удой на каждую корову составит 10000 литров? (50 баллов).

16. С целью определения урожая пшеницы в среднем по агрохозяйству были проведены укосы на пробных участках площадью 1, 3, 2, 5, 2, 6, 1, 3, 2, 11 и 2 га. Урожайность (ц/га) с участков составила 39,4; 38; 35,8; 40; 35; 42,7; 39,3; 41,6; 33; 42; 29 соответственно. Постройте доверительные интервалы для генеральных дисперсии и средней арифметической. Можно ли ожидать, что в среднем по агрохозяйству урожай составит 42 ц/га? (50 баллов).

Любая выборка дает лишь приближенное представление о генеральной совокупности, и все выборочные статистические характеристики (средняя, мода, дисперсия…) являются некоторым приближением или говорят оценкой генеральных параметров, которые вычислить в большинстве случаев не представляется возможным из-за недоступности генеральной совокупности (Рисунок 20).

Рисунок 20. Ошибка выборки

Но можно указать интервал, в котором с определенной долей вероятности лежит истинное (генеральное) значение статистической характеристики. Этот интервал называется д оверительный интервал (ДИ).

Так генеральное среднее значение с вероятностью 95% лежит в пределах

от до, (20)

где t – табличное значение критерия Стъюдента для α =0,05 и f = n -1

Может быть найден и 99% ДИ, в этом случае t выбирается для α =0,01.

Какое практическое значение имеет доверительный интервал?

    Широкий доверительный интервал показывает, что выборочная средняя неточно отражает генеральную среднюю. Обычно это связано с недостаточным объемом выборки, или же с ее неоднородностью, т.е. большой дисперсией. И то и другое дают большую ошибку среднего и, соответственно, более широкий ДИ. И это является основанием вернуться на этап планирования исследования.

    Верхние и нижние пределы ДИ дают оценку, будут ли результаты клинически значимы

Остановимся несколько подробнее на вопросе о статистической и клинической значимости результатов исследования групповых свойств. Вспомним, что задачей статистики является обнаружение хоть каких-либо отличий в генеральных совокупностях, опираясь на выборочные данные. Задачей клиницистов является обнаружение таких (не любых) различий, которые помогут диагностике или лечению. И не всегда статистические выводы являются основанием для клинических выводов. Так, статистически значимое снижение гемоглобина на 3 г/л не является поводом для беспокойства. И, наоборот, если какая-то проблема в организме человека не имеет массового характера на уровне всей популяции, это не основание для того, чтобы этой проблемой не заниматься.

Это положение рассмотрим на примере .

Исследователи задались вопросом, не отстают ли в росте от своих сверстников мальчики, перенесшие некое инфекционное заболевание. С этой целью было проведено выборочное исследование, в котором приняли участие 10 мальчиков, перенесших эту болезнь. Результаты представлены в таблице 23.

Таблица 23. Результаты статобработки

нижний предел

верхний предел

Нормативы (см)

среднего

Из этих расчетов следует, что выборочный средний рост мальчиков 10 лет, перенесших некое инфекционное заболевание, близок к норме (132,5 см). Однако нижний предел доверительного интервала (126,6 см) свидетельствует о наличии 95% вероятности того, что истинный средний рост этих детей соответствует понятию «низкий рост», т.е. эти дети отстают в росте.

В этом примере результаты расчетов доверительного интервала клинически значимы.

Одним из методов решения статистических задач является вычисление доверительного интервала. Он используется, как более предпочтительная альтернатива точечной оценке при небольшом объеме выборки. Нужно отметить, что сам процесс вычисления доверительного интервала довольно сложный. Но инструменты программы Эксель позволяют несколько упростить его. Давайте узнаем, как это выполняется на практике.

Этот метод используется при интервальной оценке различных статистических величин. Главная задача данного расчета – избавится от неопределенностей точечной оценки.

В Экселе существуют два основных варианта произвести вычисления с помощью данного метода: когда дисперсия известна, и когда она неизвестна. В первом случае для вычислений применяется функция ДОВЕРИТ.НОРМ , а во втором — ДОВЕРИТ.СТЮДЕНТ .

Способ 1: функция ДОВЕРИТ.НОРМ

Оператор ДОВЕРИТ.НОРМ , относящийся к статистической группе функций, впервые появился в Excel 2010. В более ранних версиях этой программы используется его аналог ДОВЕРИТ . Задачей этого оператора является расчет доверительного интервала с нормальным распределением для средней генеральной совокупности.

Его синтаксис выглядит следующим образом:

ДОВЕРИТ.НОРМ(альфа;стандартное_откл;размер)

«Альфа» — аргумент, указывающий на уровень значимости, который применяется для расчета доверительного уровня. Доверительный уровень равняется следующему выражению:

(1-«Альфа»)*100

«Стандартное отклонение» — это аргумент, суть которого понятна из наименования. Это стандартное отклонение предлагаемой выборки.

«Размер» — аргумент, определяющий величину выборки.

Все аргументы данного оператора являются обязательными.

Функция ДОВЕРИТ имеет точно такие же аргументы и возможности, что и предыдущая. Её синтаксис таков:

ДОВЕРИТ(альфа;стандартное_откл;размер)

Как видим, различия только в наименовании оператора. Указанная функция в целях совместимости оставлена в Excel 2010 и в более новых версиях в специальной категории «Совместимость» . В версиях же Excel 2007 и ранее она присутствует в основной группе статистических операторов.

Граница доверительного интервала определяется при помощи формулы следующего вида:

X+(-)ДОВЕРИТ.НОРМ

Где X – это среднее выборочное значение, которое расположено посередине выбранного диапазона.

Теперь давайте рассмотрим, как рассчитать доверительный интервал на конкретном примере. Было проведено 12 испытаний, вследствие которых были получены различные результаты, занесенные в таблицу. Это и есть наша совокупность. Стандартное отклонение равно 8. Нам нужно рассчитать доверительный интервал при уровне доверия 97%.

  1. Выделяем ячейку, куда будет выводиться результат обработки данных. Щелкаем по кнопке «Вставить функцию» .
  2. Появляется Мастер функций . Переходим в категорию «Статистические» и выделяем наименование «ДОВЕРИТ.НОРМ» . После этого клацаем по кнопке «OK» .
  3. Открывается окошко аргументов. Его поля закономерно соответствуют наименованиям аргументов.
    Устанавливаем курсор в первое поле – «Альфа» . Тут нам следует указать уровень значимости. Как мы помним, уровень доверия у нас равен 97%. В то же время мы говорили, что он рассчитывается таким путем:

    (1-уровень доверия)/100

    То есть, подставив значение, получаем:

    Путем нехитрых расчетов узнаем, что аргумент «Альфа» равен 0,03 . Вводим данное значение в поле.

    Как известно, по условию стандартное отклонение равно 8 . Поэтому в поле «Стандартное отклонение» просто записываем это число.

    В поле «Размер» нужно ввести количество элементов проведенных испытаний. Как мы помним, их 12 . Но чтобы автоматизировать формулу и не редактировать её каждый раз при проведении нового испытания, давайте зададим данное значение не обычным числом, а при помощи оператора СЧЁТ . Итак, устанавливаем курсор в поле «Размер» , а затем кликаем по треугольнику, который размещен слева от строки формул.

    Появляется список недавно применяемых функций. Если оператор СЧЁТ применялся вами недавно, то он должен быть в этом списке. В таком случае, нужно просто кликнуть по его наименованию. В обратном же случае, если вы его не обнаружите, то переходите по пункту «Другие функции…» .

  4. Появляется уже знакомый нам Мастер функций . Опять перемещаемся в группу «Статистические» . Выделяем там наименование «СЧЁТ» . Клацаем по кнопке «OK» .
  5. Появляется окно аргументов вышеуказанного оператора. Данная функция предназначена для того, чтобы вычислять количество ячеек в указанном диапазоне, которые содержат числовые значения. Синтаксис её следующий:

    СЧЁТ(значение1;значение2;…)

    Группа аргументов «Значения» представляет собой ссылку на диапазон, в котором нужно рассчитать количество заполненных числовыми данными ячеек. Всего может насчитываться до 255 подобных аргументов, но в нашем случае понадобится лишь один.

    Устанавливаем курсор в поле «Значение1» и, зажав левую кнопку мыши, выделяем на листе диапазон, который содержит нашу совокупность. Затем его адрес будет отображен в поле. Клацаем по кнопке «OK» .

  6. После этого приложение произведет вычисление и выведет результат в ту ячейку, где она находится сама. В нашем конкретном случае формула получилась такого вида:

    ДОВЕРИТ.НОРМ(0,03;8;СЧЁТ(B2:B13))

    Общий результат вычислений составил 5,011609 .

  7. Но это ещё не все. Как мы помним, граница доверительного интервала вычисляется путем сложения и вычитания от среднего выборочного значения результата вычисления ДОВЕРИТ.НОРМ . Таким способом рассчитывается соответственно правая и левая граница доверительного интервала. Само среднее выборочное значение можно рассчитать при помощи оператора СРЗНАЧ .

    Данный оператор предназначен для расчета среднего арифметического значения выбранного диапазона чисел. Он имеет следующий довольно простой синтаксис:

    СРЗНАЧ(число1;число2;…)

    Аргумент «Число» может быть как отдельным числовым значением, так и ссылкой на ячейки или даже целые диапазоны, которые их содержат.

    Итак, выделяем ячейку, в которую будет выводиться расчет среднего значения, и щелкаем по кнопке «Вставить функцию» .

  8. Открывается Мастер функций . Снова переходим в категорию «Статистические» и выбираем из списка наименование «СРЗНАЧ» . Как всегда, клацаем по кнопке «OK» .
  9. Запускается окно аргументов. Устанавливаем курсор в поле «Число1» и с зажатой левой кнопкой мыши выделяем весь диапазон значений. После того, как координаты отобразились в поле, клацаем по кнопке «OK» .
  10. После этого СРЗНАЧ выводит результат расчета в элемент листа.
  11. Производим расчет правой границы доверительного интервала. Для этого выделяем отдельную ячейку, ставим знак «=» и складываем содержимое элементов листа, в которых расположены результаты вычислений функций СРЗНАЧ и ДОВЕРИТ.НОРМ . Для того, чтобы выполнить расчет, жмем на клавишу Enter . В нашем случае получилась следующая формула:

    Результат вычисления: 6,953276

  12. Таким же образом производим вычисление левой границы доверительного интервала, только на этот раз от результата вычисления СРЗНАЧ отнимаем результат вычисления оператора ДОВЕРИТ.НОРМ . Получается формула для нашего примера следующего типа:

    Результат вычисления: -3,06994

  13. Мы попытались подробно описать все действия по вычислению доверительного интервала, поэтому детально расписали каждую формулу. Но можно все действия соединить в одной формуле. Вычисление правой границы доверительного интервала можно записать так:

    СРЗНАЧ(B2:B13)+ДОВЕРИТ.НОРМ(0,03;8;СЧЁТ(B2:B13))

  14. Аналогичное вычисление левой границы будет выглядеть так:

    СРЗНАЧ(B2:B13)-ДОВЕРИТ.НОРМ(0,03;8;СЧЁТ(B2:B13))

Способ 2: функция ДОВЕРИТ.СТЮДЕНТ

Кроме того, в Экселе есть ещё одна функция, которая связана с вычислением доверительного интервала – ДОВЕРИТ.СТЮДЕНТ . Она появилась, только начиная с Excel 2010. Данный оператор выполняет вычисление доверительного интервала генеральной совокупности с использованием распределения Стьюдента. Его очень удобно использовать в том случае, когда дисперсия и, соответственно, стандартное отклонение неизвестны. Синтаксис оператора такой:

ДОВЕРИТ.СТЬЮДЕНТ(альфа;стандартное_откл;размер)

Как видим, наименования операторов и в этом случае остались неизменными.

Посмотрим, как рассчитать границы доверительного интервала с неизвестным стандартным отклонением на примере всё той же совокупности, что мы рассматривали в предыдущем способе. Уровень доверия, как и в прошлый раз, возьмем 97%.

  1. Выделяем ячейку, в которую будет производиться расчет. Клацаем по кнопке «Вставить функцию» .
  2. В открывшемся Мастере функций переходим в категорию «Статистические» . Выбираем наименование «ДОВЕРИТ.СТЮДЕНТ» . Клацаем по кнопке «OK» .
  3. Производится запуск окна аргументов указанного оператора.

    В поле «Альфа» , учитывая, что уровень доверия составляет 97%, записываем число 0,03 . Второй раз на принципах расчета данного параметра останавливаться не будем.

    После этого устанавливаем курсор в поле «Стандартное отклонение» . На этот раз данный показатель нам неизвестен и его требуется рассчитать. Делается это при помощи специальной функции – СТАНДОТКЛОН.В . Чтобы вызвать окно данного оператора, кликаем по треугольнику слева от строки формул. Если в открывшемся списке не находим нужного наименования, то переходим по пункту «Другие функции…» .

  4. Запускается Мастер функций . Перемещаемся в категорию «Статистические» и отмечаем в ней наименование «СТАНДОТКЛОН.В» . Затем клацаем по кнопке «OK» .
  5. Открывается окно аргументов. Задачей оператора СТАНДОТКЛОН.В является определение стандартного отклонения при выборке. Его синтаксис выглядит так:

    СТАНДОТКЛОН.В(число1;число2;…)

    Нетрудно догадаться, что аргумент «Число» — это адрес элемента выборки. Если выборка размещена единым массивом, то можно, использовав только один аргумент, дать ссылку на данный диапазон.

    Устанавливаем курсор в поле «Число1» и, как всегда, зажав левую кнопку мыши, выделяем совокупность. После того, как координаты попали в поле, не спешим жать на кнопку «OK» , так как результат получится некорректным. Прежде нам нужно вернуться к окну аргументов оператора ДОВЕРИТ.СТЮДЕНТ , чтобы внести последний аргумент. Для этого кликаем по соответствующему наименованию в строке формул.

  6. Снова открывается окно аргументов уже знакомой функции. Устанавливаем курсор в поле «Размер» . Опять жмем на уже знакомый нам треугольник для перехода к выбору операторов. Как вы поняли, нам нужно наименование «СЧЁТ» . Так как мы использовали данную функцию при вычислениях в предыдущем способе, в данном списке она присутствует, так что просто щелкаем по ней. Если же вы её не обнаружите, то действуйте по алгоритму, описанному в первом способе.
  7. Попав в окно аргументов СЧЁТ , ставим курсор в поле «Число1» и с зажатой кнопкой мыши выделяем совокупность. Затем клацаем по кнопке «OK» .
  8. После этого программа производит расчет и выводит значение доверительного интервала.
  9. Для определения границ нам опять нужно будет рассчитать среднее значение выборки. Но, учитывая то, что алгоритм расчета при помощи формулы СРЗНАЧ тот же, что и в предыдущем способе, и даже результат не изменился, не будем на этом подробно останавливаться второй раз.
  10. Сложив результаты вычисления СРЗНАЧ и ДОВЕРИТ.СТЮДЕНТ , получаем правую границу доверительного интервала.
  11. Отняв от результатов расчета оператора СРЗНАЧ результат расчета ДОВЕРИТ.СТЮДЕНТ , имеем левую границу доверительного интервала.
  12. Если расчет записать одной формулой, то вычисление правой границы в нашем случае будет выглядеть так:

    СРЗНАЧ(B2:B13)+ДОВЕРИТ.СТЬЮДЕНТ(0,03;СТАНДОТКЛОН.В(B2:B13);СЧЁТ(B2:B13))

  13. Соответственно, формула расчета левой границы будет выглядеть так:

    СРЗНАЧ(B2:B13)-ДОВЕРИТ.СТЬЮДЕНТ(0,03;СТАНДОТКЛОН.В(B2:B13);СЧЁТ(B2:B13))

Как видим, инструменты программы Excel позволяют существенно облегчить вычисление доверительного интервала и его границ. Для этих целей используются отдельные операторы для выборок, у которых дисперсия известна и неизвестна.