Относительности теория специальная. Основы

В 1905 году Альберт Эйнштейн опубликовал специальную теорию относительности (СТО), которая объясняла, как интерпретировать движения между различными инерциальными системами отсчета – попросту говоря, объектами, которые движутся с постоянной скоростью по отношению друг к другу.

Эйнштейн объяснил, что когда два объекта двигаются с постоянной скоростью, следует рассматривать их движение друг относительно друга, вместо того чтобы принять один из них в качестве абсолютной системы отсчета.

Так что, если два космонавта, вы и, допустим, Герман, летите на двух космических кораблях и хотите сравнить ваши наблюдения, единственное, что вам нужно знать – это ваша скорость относительно друг друга.

Специальная теория относительности рассматривает лишь один специальный случай (отсюда и название), когда движение прямолинейно и равномерно. Если материальное тело ускоряется или сворачивает в сторону, законы СТО уже не действуют. Тогда в силу вступает общая теория относительности (ОТО), которая объясняет движения материальных тел в общем случае.

Теория Эйнштейна базируется на двух основных принципах:

1. Принцип относительности: физические законы сохраняются даже для тел, являющихся инерциальными системами отсчета, т. е. двигающимися на постоянной скорости относительно друг друга.

2. Принцип скорости света: скорость света остается неизменной для всех наблюдателей, независимо от их скорости по отношению к источнику света. (Физики обозначают скорость света буквой с).

Одна из причин успеха Альберта Эйнштейна состоит в том, что он ставил экспериментальные данные выше теоретических. Когда в ряде экспериментов обнаружились результаты, противоречащие общепринятой теории, многие физики решили, что эти эксперименты ошибочны.

Альберт Эйнштейн был одним из первых, кто решил построить новую теорию на базе новых экспериментальных данных.

В конце 19 века физики находились в поиске таинственного эфира – среды, в которой по общепринятым предположениям должны были распространяться световые волны, подобно акустическим, для распространения которых необходим воздух, или же другая среда – твердая, жидкая или газообразная. Вера в существование эфира привела к убеждению, что скорость света должна меняться в зависимости от скорости наблюдателя по отношению к эфиру.

Альберт Эйнштейн отказался от понятия эфира и предположил, что все физические законы, включая скорость света, остаются неизменными независимо от скорости наблюдателя – как это и показывали эксперименты.

Однородность пространства и времени

В СТО Эйнштейна постулируется фундаментальная связь между пространством и временем. Материальная Вселенная, как известно, имеет три пространственных измерения: вверх-вниз, направо-налево и вперед-назад. К нему добавляется еще одно измерение – временное. Вместе эти четыре измерения составляют пространственно-временной континуум.

Если вы двигаетесь с большой скоростью, ваши наблюдения относительно пространства и времени будут отличаться от наблюдений других людей, движущихся с меньшей скоростью.

На картинке ниже представлен мысленный эксперимент, который поможет понять эту идею. Представьте себе, что вы находитесь на космическом корабле, в руках у вас лазер, с помощью которого вы посылаете лучи света в потолок, на котором закреплено зеркало. Свет, отражаясь, падает на детектор, который их регистрирует.

Сверху – вы послали луч света в потолок, он отразился и вертикально упал на детектор. Снизу – для Германа ваш луч света двигается по диагонали к потолку, а затем – по диагонали к детектору

Допустим, ваш корабль двигается с постоянной скоростью, равной половине скорости света (0.5c). Согласно СТО Эйнштейна, для вас это не имеет значения, вы даже не замечаете своего движения.

Однако Герман, наблюдающий за вами с покоящегося звездолета, увидит совершенно другую картину. С его точки зрения, луч света пройдет по диагонали к зеркалу на потолке, отразится от него и по диагонали упадет на детектор.

Другими словами, траектория луча света для вас и для Германа будет выглядеть по-разному и длина его будет различной. А стало быть и длительность времени, которое требуется лазерному лучу для прохождения расстояния к зеркалу и к детектору, будет вам казаться различным.

Это явление называется замедлением времени: время на звездолете, движущимся с большой скоростью, с точки зрения наблюдателя на Земле течет значительно медленнее.

Этот пример, равно как и множество других, наглядно демонстрирует неразрывную связь между пространством и временем. Эта связь явно проявляется для наблюдателя, только когда речь идет о больших скоростях, близких к скорости света.

Эксперименты, проведенные со времени публикации Эйнштейном своей великой теории, подтвердили, что пространство и время действительно воспринимаются по-разному в зависимости от скорости движения объектов.

Объединение массы и энергии

Согласно теории великого физика, когда скорость материального тела увеличивается, приближаясь к скорости света, увеличивается и его масса. Т.е. чем быстрее движется объект, тем тяжелее он становится. В случае достижения скорости света, масса тела, равно как и его энергия, становятся бесконечными. Чем тяжелее тело, тем сложнее увеличить его скорость; для ускорения тела с бесконечной массой требуется бесконечное количество энергии, поэтому для материальных объектов достичь скорости света невозможно.

До Эйнштейна концепции массы и энергии в физике рассматривались по отдельности. Гениальный ученый доказал, что закон сохранения массы, как и закон сохранения энергии, являются частями более общего закона массы-энергии.

Благодаря фундаментальной связи между этими двумя понятиями, материю можно превратить в энергию, и наоборот – энергию в материю.

Содержание статьи

ОТНОСИТЕЛЬНОСТИ ТЕОРИЯ СПЕЦИАЛЬНАЯ – cовременная теория пространства и времени, в наиболее общем виде устанавливающая связь между событиями в пространстве-времени и определяющая форму записи физических законов, не меняющуюся при переходе от одной инерциальной системы отсчета к другой. Ключевым в теории является новое понимание понятия одновременности событий, сформулированное в основополагающей работе А.Эйнштейна К электродинамике движущихся сред (1905) и основанное на постулате о существовании максимальной скорости распространения сигналов – скорости света в вакууме. Специальная теория относительности обобщает представления классической механики Галилея – Ньютона на случай движения тел со скоростями, близкими к скорости света.

Споры об эфире.

С тех пор, как была установлена волновая природа света, физики были уверены, что должна существовать среда (ее назвали эфиром), в которой распространяются световые волны. Эта точка зрения подтверждалась всем опытом классической физики, примерами акустических волн, волн на поверхности воды и т.п. Когда Дж.К.Максвелл доказал, что должны существовать электромагнитные волны, распространяющиеся в пустом пространстве со скоростью света c , у него не вызывало сомнений, что эти волны должны распространяться в какой-то среде. Этой же точки зрения придерживался и Г.Герц , впервые зарегистрировавший излучение электромагнитных волн. Так как электромагнитные волны оказались поперечными (это следует из уравнений Максвелла), то Максвеллу пришлось построить хитроумную механическую модель такой среды, в которой могли бы распространяться поперечные волны (такое возможно только в очень упругих твердых телах) и которая в то же время была бы полностью проницаемой и не препятствовала движению тел сквозь нее. Эти два требования противоречат друг другу, однако вплоть до начала нынешнего столетия не удавалось предложить более разумной теории распространения света в пустоте.

Гипотеза о существовании эфира влечет за собой ряд очевидных следствий. Самое простое из них: если приемник световой волны движется навстречу источнику со скоростью v относительно эфира, то по законам классической физики скорость света относительно приемника должна равняться скорости света относительно эфира (которую естественно считать постоянной) плюс скорость приемника относительно эфира (закон сложения скоростей Галилея): с ў = c + v . Аналогично, если источник движется со скоростью v навстречу приемнику, то относительная скорость света должна равняться с ў = c - v . Таким образом, если эфир существует, то существует и некая абсолютная система отсчета, относительно которой (и только относительно нее) скорость света равна с , а во всех других системах отсчета, равномерно движущихся относительно эфира, скорость света не равна с . Так это или не так, можно решить только с помощью прямого эксперимента, заключающегося в измерении скорости света в различных системах отсчета. Ясно, что нужно найти такие системы отсчета, которые движутся с максимальной скоростью, тем более, что можно доказать, что все наблюдаемые эффекты отклонения скорости света от значения с , связанные с движением одной системы отсчета относительно другой, должны быть порядка v 2/c 2. Подходящим объектом представляется Земля, которая обращается вокруг Солнца с линейной скоростью v ~ 10 4 м/с, так что поправки должны иметь порядок (v /c ) 2 ~ 10 –8 . Эта величина кажется чрезвычайно малой, однако А.Майкельсон сумел создать прибор – интерферометр Майкельсона , который был способен зарегистрировать такие отклонения.

В 1887 А.Майкельсон вместе со своим коллегой Ю.Морли измерил скорость света в движущейся системе отсчета. Идея опыта напоминает измерение времени, которое тратит пловец, переплывая реку поперек течения и обратно и проплывая такое же расстояние вдоль и против течения. Ответ был ошеломительный: движение системы отсчета относительно эфира не оказывает никакого влияния на скорость света.

Из этого можно сделать, вообще говоря, два вывода. Возможно, эфир существует, но при движении тел сквозь него полностью увлекается движущимися телами, так что скорость тел по отношению к эфиру равна нулю. Эта гипотеза увлечения была проверена экспериментально в опытах Физо и самого Майкельсона и оказалась противоречащей эксперименту. Джон Бернал назвал знаменитый опыт Майкельсона – Морли самым выдающимся отрицательным опытом в истории науки. Оставалась вторая возможность: никакой эфир, который можно было бы экспериментально обнаружить, не существует, иными словами, нет никакой выделенной абсолютной системы отсчета, в которой скорость света равна с ; напротив, эта скорость одинакова во всех инерциальных системах отсчета. Именно эта точка зрения и стала фундаментом новой теории.

Специальная (частная) теория относительности (СТО), успешно разрешившая все противоречия, связанные с проблемой существования эфира, была создана А.Эйнштейном в 1905. Важный вклад в развитие СТО внесли Х.А. Лоренц , А.Пуанкаре и Г.Минковский.

Специальная теория относительности оказала революционное воздействие на физику, ознаменовав завершение классического этапа развития этой науки и переход к современной физике 20 в. Прежде всего, специальная теория относительности полностью изменила существовавшие до ее создания взгляды на пространство и время, показав неразрывную связь этих понятий. В рамках СТО впервые было четко сформулировано понятие об одновременности событий и показана относительность этого понятия, его зависимость от выбора конкретной системы отсчета. Во-вторых, СТО полностью разрешила все проблемы, связанные с гипотезой о существовании эфира, и позволила сформулировать стройную и непротиворечивую систему уравнений классической физики, которая пришла на смену ньютоновским уравнениям. В-третьих, СТО стала основой построения фундаментальных теорий взаимодействий элементарных частиц, прежде всего, квантовой электродинамики. Точность экспериментально проверяемых предсказаний квантовой электродинамики составляет 10 –12 , что характеризует точность, с которой можно говорить о справедливости СТО.

В-четвертых, СТО стала основой расчетов энерговыделения в ядерных реакциях распада и синтеза, т.е. основой создания как атомных электростанций, так и атомного оружия. Наконец, анализ данных, получаемых на ускорителях элементарных частиц, равно как и конструирование самих ускорителей основаны на формулах СТО. В этом смысле СТО давно стала инженерной дисциплиной.

Четырехмерный мир.

Человек существует не в трехмерном пространственном мире, а в четырехмерном мире событий (под событием понимается физическое явление в данной точке пространства в данный момент времени). Событие характеризуется заданием трех пространственных координат и одной временнóй. Таким образом, у всякого события – четыре координаты: (t ; x , y , z ). Здесь x , y , z – пространственные координаты (например, декартовы). Чтобы определить координаты события, следует задать (или иметь возможность задать): 1) начало отсчета координат; 2) заполняющую все пространство бесконечную жесткую решетку взаимно перпендикулярных стержней единичной длины; далее, следует: 3) поместить в каждом узле решетки тождественные часы (т.е. прибор, способный отсчитывать равные промежутки времени; конкретное устройство не имеет значения); 4) синхронизировать часы. Тогда любая точка в пространстве, находящаяся вблизи узла решетки, имеет в качестве пространственных координат число узлов по каждой из осей от начала координат и временную координату, равную показаниям часов в ближайшем узле. Все точки с четырьмя координатами заполняют четырехмерное пространство, называемое пространством-временем. Ключевым для физики является вопрос о геометрии этого пространства.

Для описания событий в пространстве-времени удобно использовать пространственно-временные диаграммы, на которых изображается последовательность событий для данного тела. Если (для иллюстрации) ограничиться двумерным (x ,t )-пространством, то типичная простпанственно- временнáя диаграмма событий в классической физике выглядит так, как показано на рис. 1.

Горизонтальная ось x соответствует всем трем пространственным координатам (x , y , z ), вертикальная – времени t , причем направление из «прошлого» в «будущее» отвечает движению снизу вверх по оси t .

Любая точка на горизонтальной прямой, пересекающей ось t ниже нуля, отвечает положению какого-то объекта в пространстве в момент времени (в прошлом относительно произвольно выбранного момента времени t = 0). Так, на рис. 1 тело находилось в точке А 1 пространства в момент времени t 1. Точки горизонтальной прямой, совпадающие с осью x , изображают пространственное положение тел в данный момент времени t = 0 (точка А 0). Прямая, проведенная выше оси x , соответствует положению тел в будущем (точка А 2 – положение, которое займет тело в момент времени t 2). Если соединить точки А 1, A 0, A 2, получится мировая линия тела. Очевидно, положение тела в пространстве не меняется (пространственные координаты остаются постоянными), так что эта мировая линия изображает покоящееся тело.

Если мировая линия – прямая, наклоненная под определенным углом (прямая В 1В 0В 2 на рис. 1), это означает, что тело движется с постоянной скоростью. Чем меньше угол между мировой линией и горизонтальной плоскостью, тем больше скорость движения тела. В рамках классической физики наклон мировой линии может быть любым, так как скорость тела ничем не ограничена.

Это утверждение об отсутствии предела скорости движения тел неявно содержится в механике Ньютона. Оно позволяет придать смысл понятию одновременности событий без ссылок на конкретного наблюдателя. Действительно, двигаясь с конечной скоростью, из любой точки С 0 на поверхности равного времени можно попасть в точку С 1, соответствующую более позднему времени. Можно из более ранней точки С 2 попасть в точку С 0. Однако невозможно, двигаясь с конечной скоростью, перейти из точки С 0 в любые точки А , В ,... на той же поверхности. Все события на этой поверхности одновременны (рис. 2). Можно выразиться иначе. Пусть в каждой точке трехмерного пространства находятся одинаковые часы. Возможность передавать сигналы с бесконечно большой скоростью означает, что можно одновременно синхронизовать все часы, на каком бы расстоянии друг от друга они ни находились и с какой бы скоростью при этом ни двигались (действительно, сигнал точного времени доходит до всех часов мгновенно). Иными словами, в рамках классической механики ход часов не зависит от того, движутся они или нет.

Понятие одновременности событий по Эйнштейну.

В рамках ньютоновской механики все одновременные события лежат в «плоскости» фиксированного времени t , полностью занимая трехмерное пространство (рис. 2). Геометрические соотношения между точками трехмерного пространства подчиняются законам обычной евклидовой геометрии. Таким образом, пространство-время классической механики разделяется на независимые друг от друга пространство и время.

Ключевым для понимания основ СТО является то, что в ней невозможно представить пространство-время независимыми друг от друга. Ход часов в разных точках единого пространства-времени разный и зависит от скорости наблюдателя. Этот удивительный факт основан на том, что сигналы не могут распространяться с бесконечной скоростью, (отказ от дальнодействия).

Следующий мысленный эксперимент позволяет лучше понять смысл понятия одновременности. Пусть у двух противоположных стенок вагона поезда, движущегося с постоянной скоростью v , одновременно произведены вспышки света. Для наблюдателя, находящегося посередине вагона, вспышки света от источников придут одновременно. С точки же зрения внешнего наблюдателя, стоящего на платформе, придет раньше вспышка от того источника, который приближается к наблюдателю. Все эти рассуждения подразумевают, что свет распространяется с конечной скоростью.

Таким образом, если отказаться от дальнодействия, иначе, от возможности передачи сигналов с бесконечно большой скоростью, то понятие одновременности событий становится относительным, зависимым от наблюдателя. В этом изменении взгляда на одновременность – самое фундаментальное отличие СТО от дорелятивистской физики.

Для определения понятия одновременности и синхронизации часов, находящихся в разных пространственных точках, Эйнштейн предложил следующую процедуру. Пусть из точки А посылается очень короткий световой сигнал в вакууме; при отправлении сигнала часы в точке А показывают время t 1 . Сигнал приходит в точку В в тот момент, когда часы в точке В показывают время t ". После отражения в точке В сигнал возвращается в точку А , так что в момент прихода часы в А показывают время t 2. По определению, часы в А и В синхронизованы, если в точке В часы установлены так, что t " = (t 1 + t 2)/2.

Постулаты специальной теории относительности.

1. Первый постулат – принцип относительности, утверждающий, что из всех мыслимых движений тел можно выделить (без ссылок на движение других тел) определенный класс движений, называемых неускоренными, или инерциальными. Системы отсчета, связанные с этими движениями, называются инерциальными системами отсчета. В классе инерциальных систем нет способа отличить движущуюся систему от покоящейся. Физическое содержание первого закона Ньютона – утверждение о существовании инерциальных систем отсчета.

Если есть одна инерциальная система, это значит, что их бесконечно много. Любая система отсчета, движущаяся относительно первой с постоянной скоростью, также инерциальна.

Принцип относительности гласит, что все уравнения всех физических законов имеют одинаковый вид во всех инерциальных системах отсчета, т.е. физические законы инвариантны относительно перехода из одной инерциальной системы отсчета в другую. Важно установить, какими формулами определяется преобразование координат и времени события при таком переходе.

В классической ньютоновской физике вторым постулатом является неявное утверждение о возможности распространения сигналов с бесконечно большой скоростью. Это приводит к возможности одновременной синхронизации всех часов в пространстве и к независимости хода часов от скорости их движения. Иными словами, при переходе от одной инерциальной системы к другой время не меняется: t ў = t . Тогда становятся очевидными формулы преобразования координат при переходе от одной инерциальной системы отсчета к другой (преобразования Галилея):

x ў = x vt , y ў = y , z ў = z , t ў = t .

Уравнения, выражающие законы классической механики, инвариантны относительно преобразований Галилея, т.е. не изменяют свою форму при переходе от одной инерциальной системы отсчета к другой.

В специальной теории относительности принцип относительности распространяется на все физические явления и может быть выражен так: никакие эксперименты (механические, электрические, оптические, тепловые и т.п.) не позволяют отличить одну инерциальную систему отсчета от другой, т.е. не существует абсолютного (не зависящего от наблюдателя) способа узнать скорость инерциальной системы отсчета.

2. Второй постулат классической механики о неограниченности скорости распространения сигналов или движения тел заменяется в СТО постулатом о существовании предельной скорости распространения физических сигналов, численно равной скорости распространения света в вакууме

с = 2,99792458·10 8 м/с.

Более точно, в СТО постулируется независимость скорости света от скорости движения источника или приемника этого света. После этого можно доказать, что с является максимально возможной скоростью распространения сигналов, причем эта скорость одинакова во всех инерциальных системах отсчета.

Как будут теперь выглядеть пространственно-временные диаграммы? Чтобы понять это, следует обратиться к уравнению, описывающему распространение фронта сферической световой волны в пустоте. Пусть в момент t = 0 произошла вспышка света от источника, расположенного в начале координат (x , y , z ) = 0. В любой последующий момент времени t > 0 фронт световой волны будет представлять собой сферу радиусом l = ct , равномерно расширяющуюся во все стороны. Уравнение такой сферы в трехмерном пространстве имеет вид:

x 2 + y 2 + z 2 = c 2t 2 .

На пространственно-временной диаграмме мировая линия световой волны изобразится в виде прямых, наклоненных под углом 45° к оси x . Если учесть, что координате x на диаграмме соответствует на самом деле совокупность всех трех пространственных координат, то уравнение фронта световой волны определяет некоторую поверхность в четырехмерном пространстве событий, которую принято называть световым конусом.

Каждая точка на пространственно-временной диаграмме – это некоторое событие, произошедшее в определенном месте в определенный момент времени. Пусть точка О на рис. 3 отвечает некоторому событию. По отношению к этому событию все другие события (все другие точки на диаграмме) разделяются на три области, условно называемые конусами прошлого и будущего и пространственно-подобной областью. Все события внутри конуса прошлого (например, событие А на диаграмме) происходят в такие моменты времени и на таком расстоянии от О , чтобы можно было успеть достичь точки О , двигаясь со скоростью, не превышающей скорости света (из геометрических соображений ясно, что если v > c , то наклон мировой линии к оси x уменьшается, т. е. угол наклона становится меньше 45°; и наоборот, если v c, то угол наклона к оси x становится больше 45°). Аналогично, событие В лежит в конусе будущего, так как до этой точки можно добраться, двигаясь со скоростью v c.

Иное положение с событиями в пространственно-подобной области (например, событие С ). Для этих событий соотношение между пространственным расстоянием до точки О и временем таково, что добраться до О можно, только двигаясь со сверхсветовой скоростью (пунктирная линия на диаграмме изображает мировую линию такого запрещенного движения; видно, что наклон этой мировой линии к оси x меньше 45°, т.е. v > c ).

Итак, все события по отношению к данному делятся на два неэквивалентных класса: лежащие внутри светового конуса и вне него. Первые события могут быть реализованы реальными телами, движущимися со скоростью v c, вторые – нет.

Преобразования Лоренца.

Формула, описывающая распространение фронта сферической световой волны, может быть переписана в виде:

c 2t 2 – x 2 – y 2 – z 2 = 0.

Пусть s 2 = c 2t 2 – x 2 – y 2 – z 2. Величина s называется интервалом. Тогда уравнение распространения световой волны (уравнение светового конуса на пространственно-временной диаграмме) примет вид:

Из геометрических соображений в областях абсолютного прошлого и абсолютного будущего (иначе их называют временно-подобными областями) s 2 > 0, а в пространственно-подобной области s 2 s инвариантен относительно перехода из одной инерциальной системы отсчета в другую. Согласно принципу относительности, уравнение s 2 = 0, выражающее физический закон распространения света, обязано иметь один и тот же вид во всех инерциальных системах отсчета.

Величина s 2 не инвариантна относительно преобразований Галилея (проверяется подстановкой) и можно сделать вывод, что должны существовать иные преобразования координат и времени при переходе от одной инерциальной системы к другой. При этом, учитывая относительный характер одновременности, уже нельзя считать t ў = t , т.е. считать время абсолютным, идущим независимо от наблюдателя, и вообще отделить время от пространства, как это можно было сделать в ньютоновской механике.

Преобразования координат и времени события при переходе от одной инерциальной системы отсчета к другой, не изменяющие величины интервала s 2, носят название преобразований Лоренца. В случае, когда одна инерциальная система отсчета движется относительно другой вдоль оси x со скоростью v , эти преобразования имеют вид:

Здесь выписаны как преобразования Лоренца от нештрихованной системы координат К (условно ее принято считать неподвижной, или лабораторной системой) к штрихованной системе К ў и обратно. Эти формулы отличаются знаком скорости v , что соответствует принципу относительности Эйнштейна: если К ў движется относительно К со скоростью v вдоль оси x , то К движется относительно К ў со скоростью –v , а в остальном обе системы полностью равноправны.

Интервал в новых обозначениях принимает вид:

Прямой подстановкой можно проверить, что это выражение не меняет вид при преобразованиях Лоренца, т. е. s ў 2 = s 2.

Часы и линейки.

Наиболее удивительными (с точки зрения классической физики) следствиями преобразований Лоренца являются утверждения, что наблюдатели в двух разных инерциальных системах отсчета будут получать разные результаты при измерении длины какого-то стержня или интервала времени между двумя событиями, произошедшими в одном месте.

Сокращение длины стержня.

Пусть стержень расположен вдоль оси x ў системы отсчета S ў и покоится в этой системе. Его длина L ў = x ў 2 – x ў 1 фиксируется наблюдателем в этой системе. Переходя в произвольную систему S , можно записать выражения для координат конца и начала стержня, измеренных в один и тот же момент времени по часам наблюдателя в этой системе:

x ў 1 = g (x 1 – b x 0), x ў 2 = g (x 2 – b x 0).

L ў = x ў 2 – x ў 1 = g (x 2 – x 1) = g L .

Эту формулу обычно записывают в виде:

L = L ў /g .

Так как g > 1, то это означает, что длина стержня L в системе отсчета S оказывается меньше длины этого же стержня L ў в системе S ў , в которой стержень покоится (лоренцовское сокращение длины).

Замедление темпа хода времени.

Пусть два события происходят в одном и том же месте в системе S ў , и интервал времени между этими событиями по часам наблюдателя, покоящегося в этой системе, равен

Dt = t ў 2 – t ў 1.

Собственным временем принято называть время t , измеренное по часам наблюдателя, покоящегося в данной системе отсчета. ует Собственное время и время, измеренное по часам движущегося наблюдателя, связаны. Так как

где x ў – пространственная координата события, то вычитая одно равенство из другого, находим:

D t = g Dt .

Из этой формулы следует, что часы в системе S показывают бóльший интервал времени между двумя событиями, чем часы в системе S ў , движущейся относительно S . Иными словами, интервал собственного времени между двумя событиями, который показывают часы, движущиеся вместе с наблюдателем, всегда меньше интервала времени между этими же событиями, который показывают часы неподвижного наблюдателя.

Эффект замедления времени непосредственно наблюдается в экспериментах с элементарными частицами. Большинство этих частиц нестабильно и распадается через определенный интервал времени t (точнее, известны период полураспада или среднее время жизни частицы). Ясно, что это время измеряется по покоящимся относительно частицы часам, т.е. это собственное время жизни частицы. Но частица пролетает мимо наблюдателя с большой скоростью, иногда близкой к скорости света. Поэтому время ее жизни по часам в лаборатории становится равным t = gt , и при g >> 1 время t >> t . Впервые с этим эффектом исследователи столкнулись при изучении мюонов, рождавшихся в верхних слоях атмосферы Земли в результате взаимодействия частиц космического излучения с ядрами атомов в атмосфере. Были установлены следующие факты:

мюоны рождаются на высоте порядка 100 км над поверхностью Земли;

собственное время жизни мюона t @ 2Ч 10 –6 с;

поток мюонов, рожденных в верхних слоях атмосферы, доходит до поверхности Земли.

Но это кажется невозможным. Ведь даже если бы мюоны двигались со скоростью, равной скорости света, они все равно могли бы за время своей жизни пролететь расстояние, равное всего c t » 3Ч 10 8 Ч 2Ч 10 –6 м = 600 м. Таким образом, тот факт, что мюоны, не распавшись, пролетают 100 км, т. е. расстояние, в 200 раз большее, и регистрируются вблизи поверхности Земли, может быть объяснен только одним: с точки зрения земного наблюдателя, время жизни мюона возросло. Расчеты полностью подтверждают релятивистскую формулу. Тот же эффект экспериментально наблюдается в ускорителях элементарных частиц.

Следует подчеркнуть, что не в выводах о сокращении длины и замедлении времени главная суть СТО. Самым существенным в специальной теории относительности является не относительность понятий пространственных координат и времени, а неизменность (инвариантность) некоторых комбинаций этих величин (например, интервала) в едином пространстве-времени, поэтому в определенном смысле СТО следовало бы именовать не теорией относительности, а теорией абсолютности (инвариантности) законов природы и физических величин по отношению к преобразованиям перехода из одной инерциальной системы отсчета в другую.

Сложение скоростей.

Пусть системы отсчета S и S ў движутся относительно друг друга со скоростью, направленной вдоль оси x (x ў ). Преобразования Лоренца для изменения координат тела D x , D y V есть только одна компонента вдоль оси x , так что скалярное произведение Vv ў = Vv ў x ):

В предельном случае, когда все скорости много меньше скорости света, V c и v ў c (нерелятивистский случай), можно пренебречь в знаменателе вторым слагаемым и это приводит к закону сложения скоростей классической механики

v = v ў + V .

В противоположном, релятивистском случае (скорости близки к скорости света) легко убедиться, что вопреки наивному представлению, при сложении скоростей невозможно получить скорость, превышающую скорость света в вакууме. Пусть, например, все скорости направлены вдоль оси x и v ў = c, тогда видно, что и v = c .

Не следует думать, что при сложении скоростей в рамках СТО вообще никогда не могут получиться скорости, большие скорости света. Вот простой пример: два звездолета сближаются со скоростью 0,8с каждый относительно земного наблюдателя. Тогда скорость сближения звездолетов относительно того же наблюдателя будет равна 1,6с . И это никак не противоречит принципам СТО, т. к. речь не идет о скорости передачи сигнала (информации). Однако, если задать вопрос, какова скорость приближения одного звездолета к другому с точки зрения наблюдателя в звездолете, то правильный ответ получается применением релятивистской формулы сложения скоростей: скорость звездолета относительно Земли (0,8с ) складывается со скоростью движения Земли относительно второго звездолета (тоже 0,8с ), и в результате v = 1,6/(1+0,64)c = 1,6/1,64c = 0,96c .

Соотношение Эйнштейна.

Главной прикладной формулой СТО является соотношение Эйнштейна между энергией E , импульсом p и массой m свободно движущейся частицы:

Эта формула заменяет ньютоновскую формулу, связывающую кинетическую энергию с импульсом:

E кин = p 2/(2m ).

Из формулы Эйнштейна следует, что при p = 0

E 0 = mc 2.

Смысл этой знаменитой формулы в том, что массивная частица в сопутствующей системе отсчета (т. е. в инерциальной системе отсчета, движущейся вместе с частицей, так что относительно нее частица покоится) обладает определенной энергией покоя Е 0, однозначно связанной с массой этой частицы. Эйнштейн постулировал, ято эта энергия вполне реальна и при изменении массы частицы может переходить в другие виды энергии и это является основой ядерных реакций.

Можно показать, что с точки зрения наблюдателя, относительно которого частица движется со скоростью v , энергия и импульс частицы изменяются:

Таким образом, значения энергии и импульса частицы зависят от той системы отсчета, в которой измеряются эти величины. Соотношение Эйнштейна выражает всеобщий закон эквивалентности и взаимопревращаемости массы и энергии. Открытие Эйнштейна стало основой не только многих технических достижений 20 в., но и понимания рождения и эволюции Вселенной.

Александр Берков

Специальная теория относительности Эйнштейна (СТО) расширяет границы классической ньютоновской физики, действующей в области нерелятивистских скоростей, малых по сравнению со скоростью света с, на любые, в том числе релятивистские, т.е. сравнимые с с, скорости. Все результаты релятивистской теории при переходят в результаты классической нерелятивистской физики (принцип соответствия).

Постулаты СТО. Специальная теория относительности опирается на два постулата:

Первый постулат (принцип относительности Эйнштейна): все физические законы - как механические, так и электромагнитные - имеют одинаковый вид во всех инерциальных системах отсчета (ИСО). Иными словами, никакими опытами нельзя выделить какую-то одну систему отсчета и назвать именно ее покоящейся. Этот постулат является расширением принципа относительности Галилея (см. разд. 1.3) на электромагнитные процессы.

Второй постулат Эйнштейна: скорость света в вакууме одинакова для всех ИСО и равна с Этот постулат содержит сразу два утверждения:

а) скорость света не зависит от скорости источника,

б) скорость света не зависит от того, в какой ИСО находится наблюдатель с приборами, т.е. не зависит от скорости приемника.

Постоянство скорости света и независимость ее от движения источника следуют из уравнений электромагнитного поля Максвелла. Казалось очевидным, что такое утверждение может быть верным только в одной системе отсчета. С точки зрения классических представлений о пространстве - времени, любой другой наблюдатель, двигаясь со скоростью должен для встречного луча получить скорость а для испущенного вперед луча - скорость . Такой результат означал бы, что уравнения Максвелла выполняются только в одной ИСО, заполненной неподвижным «эфиром, относительно которого и распространяются световые волны. Однако попытка обнаружить изменение скорости света, связанное с движением Земли относительно эфира, дала отрицательный результат (опыт Майкельсона- Морли). Эйнштейн предположил, что уравнения Максвелла, как и все законы физики, имеют один и тот же вид во всех ИСО, т.е. что скорость света в любой ИСО равна с (второй постулат). Это предположение привело к пересмотру основных представлений о пространстве - времени.

Преобразования Лоренца. Преобразования Лоренца связывают между собой координаты и время события, измеренные в двух ИСО, одна из которых движется относительно другой с постоянной скоростью V. При таком же выборе осей координат и отсчета времени, как в преобразованиях Галилея (формула (7)), преобразования Лоренца имеют вид:

Часто удобно пользоваться преобразованиями для разности координат и времен двух событий:

где для краткости введено обозначение

Преобразования Лоренца переходят в преобразования Галилея при . Они выводятся из второго постулата СТО и из требования линейности преобразований, выражающего условие однородности пространства. Обратные преобразования из в К можно получить из (42), (43) заменой V на -V:

Сокращение длины. Длина движущегося отрезка определяется как расстояние между точками, где концы отрезка находились одновременно (т.е. Рассмотрим твердое тело, которое движется поступательно со скоростью и свяжем с ним систему отсчета Из уравнения (43) (в котором надо положить получим, что продольные размеры движущегося тела сокращаются:

где - собственный продольный размер, т.е. измеренный в системе отсчета К, в которой тело неподвижно. Поперечные размеры движущегося тела не изменяются.

Пример 1. Если квадрат движется со скоростью вдоль одной из своих сторон, то он превращается в прямоугольник с углом между диагоналями, равным .

Относительность хода времени. Из преобразований Лоренца видно, что время протекает по-разному в разных ИСО. В частности, события, происходящие в системе К одновременно но

в разных точках пространства, в К могут быть не одновременными: может быть как положительным, так и отрицательным (относительность одновременности). Часы, движущиеся вместе с системой отсчета (т.е. неподвижные относительно или показывают собственное время этой ИСО. С точки зрения наблюдателя в системе А, эти часы отстают от его собственных (замедление хода времени). Рассматривая два отсчета движущихся часов как два события, из (45) получим:

где - собственное время движущихся часов (точнее, связанной с ними Равноправие всех ИСО проявляется в том, что с точки зрения наблюдателя К часы, неподвижные относительно , будут отставать от его собственных. (Заметим, что для контроля за движущимися часами неподвижный наблюдатель в разные моменты времени использует разные часы.) Парадокс близнецов заключается в том, что СТО предсказывает различие в возрасте двух близнецов, один из которых оставался на Земле, а другой путешествовал в глубоком космосе (космонавт будет моложе); казалось бы, это нарушает равноправие их систем отсчета. На самом деле, только земной близнец все время находился в одной ИСО, космонавт же поменял ИСО для возвращения на Землю (его же собственная система отсчета неинерциальна).

Пример 2. Среднее собственное время жизни нестабильного мюона , т.е. Благодаря эффекту замедления времени, с точки зрения земного наблюдателя космический мюон, летящий со скоростью близкой к скорости света (7 1), живет в среднем пролетает от места рождения в верхних слоях атмосферы расстояние порядка что позволяет регистрировать его на поверхности Земли.

Сложение скоростей в СТО. Если частица движется со скоростью относительно то ее скорость относительно К можно найти, выразив из (45) и подставив в

При с происходит переход к нерелятивистскому закону сложения скоростей (формула Важное свойство формулы (48) состоит в том, что если V и меньше с, то и будет меньше с. Например, если мы разгоним частицу до а затем, перейдя в ее систему отсчета, снова разгоним ее до то результирующая скорость окажется не Видно, что превзойти скорость света не удается. Скорость света является максимально возможной скоростью передачи взаимодействий в природе.

Интервал. Причинность. Преобразования Лоренца не сохраняют ни величину интервала времени, ни длину пространственного отрезка. Однако можно показать, что при преобразованиях Лоренца сохраняется величина

где называется интервалом между событиями 1 и 2 . Если то интервал между событиями называют времениподобным, так как в этом случае существует ИСО, в которой т.е. события происходят в одном месте, но в разное время. Такие события могут быть причинно связанными. Если, наоборот, то интервал между событиями называют пространственно-подобным, так как в этом случае существует ИСО, в которой т.е. события происходят одновременно в разных точках пространства. Между такими событиями не может существовать причинной связи. Условие означает, что луч света, испущенный в момент более раннего события (например, из точки не успевает достигнуть точки к моменту времени События, отделенные от события 1 времениподобным интервалом, представляют по отношению к нему или абсолютное прошлое или абсолютное будущее порядок следования этих событий одинаковый во всех ИСО. Порядок следования событий, отделенных пространственноподобным интервалом, может быть разным в разных ИСО.

Лоренцовы 4-векторы. Четверка величин которые при переходе из системы К в систему К преобразуются так же, как т.е. (см. (42)):

называется лоренцовым четырехмерным вектором (или, коротко, лоренцовым -вектором). Величины называются пространственными компонентами -вектора, - его временной компонентой. Сумма двух -векторов и произведение -вектора на число - тоже -векторы. При изменении ИСО сохраняется величина, аналогичная интервалу: а также скалярное произведение Физическое равенство, записанное в виде равенства двух -векторов, остается верным во всех ИСО.

Импульс и энергия в СТО. Компоненты скорости преобразуются не так, как компоненты 4-вектора (сравните уравнения (48) и (50)), потому что в выражении преобразуются как числитель, так и знаменатель. Поэтому величина соответствующая классическому определению импульса, не может сохраняться во

всех ИСО. Релятивистский -вектор импульса определяют как

где - бесконечно малое изменение собственного времени частицы (см. (47)), т.е. измеренное в ИСО, скорость которой равна скорости частицы в данный момент не зависит от того, из какой ИСО мы наблюдаем за частицей.) Пространственные компоненты -вектора образуют релятивистский импульс

а временная компонента оказывается равной где Е - релятивистская энергия частицы:

Релятивистская энергия включает в себя все виды внутренней энергии.

Пример 3. Пусть энергия покоящегося тела увеличилась на Найти импульс этого тела в системе отсчета, движущейся со скоростью .

Решение. В соответствии с формулами релятивистского преобразования (54) импульс равен Видно, что увеличение массы соответствует формуле (58).

Основной закон релятивистской динамики. Приложенная к частице сила равна, как и в классической механике, производной от импульса:

но релятивистский импульс (51) отличается от классического. Под действием приложенной силы импульс может неограниченно возрастать, но из определения (51) видно, что скорость будет меньше с. Работа силы (59)

равна изменению релятивистской энергии. Здесь были использованы формулы (см. (56)) и .

3.5. Специальная теория относительности (СТО)

Введение в СТО

С теорией относительности мы знакомимся еще в средней школе. Эта теория объясняет нам явления окружающего мира таким образом, что это противоречит «здравому смыслу». Правда, еще тот же А. Эйнштейн в свое время заметил: «Здравый смысл – это предрассудки, которые складываются в возрасте до восемнадцати лет».

Еще в XVIII в. ученые пытались ответить на вопросы о том, как передается гравитационное взаимодействие и как распространяется свет (позже вообще любые электромагнитные волны). Поиски ответов на эти вопросы и явились причиной разработки теории относительности.

В XIX в. физики были убеждены, что существует так называемый эфир (мировой эфир, светоносный эфир). По представлениям прошлых столетий, это некая всепроникающая всезаполняющая среда. Развитие физики во второй половине XIX в. требовало от ученых максимально конкретизировать представления об эфире. Если предположить, что эфир подобен газу, то в нем могли бы распространяться только продольные волны, а электромагнитные волны – поперечные. Непонятно, как в таком эфире могли бы двигаться небесные тела. Имелись и другие серьезные возражения против эфира. В то же время шотландский физик Джеймс Максвелл (1831–1879) создал теорию электромагнитного поля, из которой, в частности, следовала величина конечной скорости распространения этого поля в пространстве – 300 000 км/с. Немецкий физик Генрих Герц (1857–1894) доказал опытным путем идентичность света, тепловых лучей и электромагнитного «волнового движения». Он определил, что электромагнитная сила действует со скоростью 300 000 км/с. Больше того, Герц установил, что «электрические силы могут отделяться от весомых тел и существовать далее самостоятельно как состояние или изменение пространства». Однако ситуация с эфиром ставила много вопросов, и для отмены этого понятия требовался прямой эксперимент. Идею его сформулировал еще Максвелл, предложивший использовать в качестве движущегося тела Землю, которая перемещается по орбите со скоростью 30 км/с. Такой опыт требовал крайне высокой точности измерений. Эту труднейшую задачу в 1881 г. решили американские физики А. Майкельсон и Э. Морли. Согласно гипотезе «неподвижного эфира», можно наблюдать «эфирный ветер» при движении Земли сквозь «эфир», а скорость света по отношению к Земле должна зависеть от направления светового луча относительно направления движения Земли в эфире (то есть свет направляется по движению Земли и против). Скорости при наличии эфира должны были быть различными. Но они оказались неизменными. Это показывало, что эфира нет. Этот отрицательный результат стал подтверждением теории относительности. Опыт Майкельсона и Морли по определению скорости света неоднократно повторялся позднее, в 1885–1887 гг., с тем же результатом.

В 1904 г. на научном конгрессе французский математик Анри Пуанкаре (1854–1912) высказал мнение, что в природе не может быть скоростей, больших скорости света. Тогда же А. Пуанкаре сформулировал принцип относительности как всеобщий закон природы. В 1905 г. он писал: «Невозможность доказать путем опытов абсолютное движение Земли является, очевидно, общим законом природы». Здесь же он указывает на преобразования Лоренца и на общую связь пространственных и временных координат.

Альберт Эйнштейн (1879–1955), создавая специальную теорию относительности, о результатах Пуанкаре еще не знал. Позже Эйнштейн напишет: «Я совершенно не понимаю, почему меня превозносят как создателя теории относительности. Не будь меня, через год это бы сделал Пуанкаре, через два года сделал бы Минковский, в конце концов, более половины в этом деле принадлежит Лоренцу. Мои заслуги преувеличены». Однако Лоренц со своей стороны в 1912 г. писал: «Заслуга Эйнштейна состоит в том, что он первым выразил принцип относительности в виде всеобщего, строгого закона».


Два постулата Эйнштейна в СТО

Для описания физических явлений Галилей ввел понятие инерциальной системы. В такой системе тело, на которое не действует какая-либо сила, находится в покое или в состоянии равномерного прямолинейного движения. Законы, описывающие механическое движение, в различных инерциальных системах одинаково справедливы, то есть не изменяются при переходе от одной системы координат к другой. Например, если пассажир идет в движущемся вагоне поезда в направлении его движения со скоростью v 1 = 4 км/ч, а поезд движется со скоростью v 2 = 46 км/ч, то скорость пассажира относительно железнодорожного полотна будет v = v 1 + v 2 = 50 км/ч, то есть здесь имеется сложение скоростей. По «здравому смыслу» это незыблемый факт:

v = v 1 + v 2

Однако в мире больших скоростей, соизмеримых со скоростью света, указанная формула сложения скоростей просто неверна. В природе свет распространяется со скоростью с = 300 000 км/с независимо от того, в какую сторону по отношению к наблюдателю движется источник света.

В 1905 г. в немецком научном журнале «Анналы физики» 26-летний Альберт Эйнштейн опубликовал статью «Об электродинамике движущихся тел». В этой статье он сформулировал два знаменитых постулата, которые легли в основание частной, или специальной, теории относительности (СТО), изменившей классические представления о пространстве и времени.

В первом постулате Эйнштейн развил классический принцип относительности Галилея. Он показал, что этот принцип является всеобщим, в том числе и для электродинамики (а не только для механических систем). Это положение не было однозначным, так как потребовалось отказаться от ньютоновского дальнодействия.

Обобщенный принцип относительности Эйнштейна утверждает, что никакими физическими опытами (механическими и электромагнитными) внутри данной системы отсчета нельзя установить, движется эта система равномерно или покоится. При этом пространство и время являются связанными друг с другом, зависящими друг от друга (у Галилея и Ньютона пространство и время независимы друг от друга).

Второй постулат специальной теории относительности Эйнштейн предложил после анализа электродинамики Максвелла – это принцип постоянства скорости света в вакууме, которая примерно равна 300 000 км/с.

Скорость света – это самая большая скорость в нашей Вселенной. Больше скорости 300 000 км/с в окружающем нас мире быть не может.

В современных ускорителях микрочастицы разгоняются до огромных скоростей. Например, электрон разгоняется до скорости v е = 0,9999999 С, где v е, С – скорости электрона и света соответственно. При этом, с точки зрения наблюдателя, масса электрона возрастает в 2500 раз:


Здесь m e0 – масса покоя электрона, m e – масса электрона на скорости v e .

Достичь скорости света электрон не может Однако существуют микрочастицы, которые имеют скорость света, их называют «люксоны».

К ним относятся фотоны и нейтрино. У них практически нет массы покоя, их нельзя затормозить, они всегда движутся со скоростью света с. Все остальные микрочастицы (тардионы) движутся со скоростями меньше скорости света. Микрочастицы, у которых скорость движения могла бы быть больше скорости света, называют тахионами. Таких частиц в нашем реальном мире нет.

Исключительно важным результатом теории относительности является выявление связи между энергией и массой тела. При малых скоростях


где E = m 0 c 2 – энергия покоя частицы с массой покоя m 0 ,а E K кинетическая энергия движущейся частицы.

Огромным достижением теории относительности является установленный ею факт эквивалентности массы и энергии (E = m 0 c 2). Однако речь идет не о превращении массы в энергию и наоборот, а о том, что превращение энергии из одного вида в другой соответствует переходу массы из одной формы в другую. Энергию нельзя заменить массой, так как энергия характеризует способность тела выполнять работу, а масса – меру инерции.

При скоростях релятивистских, близких к скорости света:


где E – энергия, m – масса частицы, m – масса покоя частицы, с – скорость света в вакууме.

Из приведенной формулы видно, что для достижения скорости света частице нужно сообщить бесконечно большую энергию. Для фотонов и нейтрино эта формула несправедлива, так как у них v = c.


Релятивистские эффекты

Под релятивистскими эффектами в теории относительности понимают изменения пространственно-временных характеристик тел при скоростях, соизмеримых со скоростью света.

В качестве примера обычно рассматривается космический корабль типа фотонной ракеты, который летит в космосе со скоростью, соизмеримой со скоростью света. При этом неподвижный наблюдатель может заметить три релятивистских эффекта:

1. Увеличение массы по сравнению с массой покоя. С ростом скорости растет и масса. Если бы тело могло двигаться со скоростью света, то его масса возросла бы до бесконечности, что невозможно. Эйнштейн доказал, что масса тела есть мера содержащейся в ней энергии (E= mc 2 ). Сообщить телу бесконечную энергию невозможно.

2. Сокращение линейных размеров тела в направлении его движения. Чем больше будет скорость космического корабля, пролетающего мимо неподвижного наблюдателя, и чем ближе она будет к скорости света, тем меньше будут размеры этого корабля для неподвижного наблюдателя. При достижении кораблем скорости света его наблюдаемая длина будет равна нулю, чего быть не может. На самом же корабле космонавты этих изменений не будут наблюдать. 3. Замедление времени. В космическом корабле, движущемся со скоростью, близкой к скорости света, время течет медленнее, чем у неподвижного наблюдателя.

Эффект замедления времени сказался бы не только на часах внутри корабля, но и на всех процессах, протекающих на нем, а также на биологических ритмах космонавтов. Однако фотонную ракету нельзя рассматривать как инерциальную систему, ибо она во время разгона и торможения движется с ускорением (а не равномерно и прямолинейно).

В теории относительности предложены принципиально новые оценки пространственно-временных отношений между физическими объектами. В классической физике при переходе от одной инерциальной системы (№ 1) к другой (№ 2) время остается тем же – t 2 = t L а пространственная координата изменяется по уравнению x 2 = x 1 – vt. В теории относительности применяются так называемые преобразования Лоренца:


Из отношений видно, что пространственные и временные координаты зависят друг от друга. Что касается сокращения длины в направлении движения, то


а ход времени замедляется:


В 1971 г. в США был поставлен эксперимент по определению замедления времени. Изготовили двое совершенно одинаковых точных часов. Одни часы оставались на земле, а другие помещались в самолет, который летал вокруг Земли. Самолет, летящий по круговой траектории вокруг Земли, движется с некоторых ускорением, и значит, часы на борту самолета находятся в другой ситуации по сравнению с часами, покоящимися на земле. В соответствии с законами теории относительности часы-путешественники должны были отстать от покоящихся на 184 нс, а на самом деле отставание составило 203 нс. Были и другие эксперименты, в которых проверялся эффект замедления времени, и все они подтвердили факт замедления. Таким образом, разное течение времени в системах координат, движущихся относительно друг друга равномерно и прямолинейно, является непреложным экспериментально установленным фактом.


Общая теория относительности

После опубликования специальной теории относительности в 1905 г. А. Эйнштейн обратился к современному представлению тяготения. В 1916 г. он опубликовал общую теорию относительности (ОТО), которая с современных позиций объясняет теорию тяготения. Она основывается на двух постулатах специальной теории относительности и формулирует третий постулат – принцип эквивалентности инертной и гравитационной масс. Важнейшим выводом ОТО является положение об изменении геометрических (пространственных) и временных характеристик в гравитационных полях (а не только при движении с большими скоростями). Этот вывод связывает ОТО с геометрией, то есть в ОТО наблюдается геометризация тяготения. Классическая геометрия Евклида для этого не годилась. Новая геометрия появилась еще в XIX в. в трудах русского математика Н. И. Лобачевского, немецкого – Б. Римана, венгерского – Я. Больяйя.

Геометрия нашего пространства оказалась неевклидовой.

Естественный скептический вопрос: «Каковы же границы применимости преобразований Галилея?» возник перед человечеством к конце ХIX – начале ХХ веков. Возник он в связи с изучением парадоксальных свойств эфира – гипотетической абсолютно упругой среды, в которой свет распространяется без затухания, как в абсолютно твердой среде.

Сомнения в бесконечной применимости преобразований Галилея, по крайней мере, в части закона сложения скоростей, возникли при анализе результатов опытов Майкельсона-Морли по определению скорости «эфирного ветра» из сравнения скорости света, излученного источником, движущимся вдоль направления перемещения Земли на орбите и скорости света вдоль направления, перпендикулярного касательной к орбите. Измерения производились на чрезвычайно точном приборе - интерферометре Майкельсона. Земля остроумно была выбрана в качестве объекта, движущегося с линейной скоростью 30 км/сек, практически до сих пор недостижимой современной техникой для массивных объектов.

Опыт Майкельсона, впервые поставленный в 1881 году, и давший отрицательный ответ, поставлен был фундаментально: плита толщиной до 0,5 м, на которой смонтированы зеркала, была изготовлена из гранита, слабо расширяющегося с нагреванием, и плавала в ртути для бездеформационного поворота. Первичная точность опыта позволяла обнаружить «эфирный ветер» при скорости 10 км/с. Позднее он многократно повторялся, точность была повышена до возможности обнаружения ветра со скоростью 30 м/с. Но ответ был стабильно нулевым.

Преобразования Галилея не подтвердились при наблюдении движений с большими скоростями. Например, не оказалось нарушений в ритме периодического движения двойных звезд, между тем как направление скорости их движения меняется на прямом и обратных путях обращения. Скорость света, таким образом, оказалась не зависящей от движения источника.

Со времени проведения опытов Майкельсоном и Морли в 1881 году и до 1905 года – до разработки основ СТО – делались многочисленные попытки выработать гипотезы, в которых результаты ключевого опыта нашли бы объяснение. И при этом все пытались сохранить эфир, видоизменяя лишь его свойства.

Наиболее известны любопытные попытки ирландского физика Джорджа Фитцджеральда и голландского физика Хендрика Лоренца. Первый предложил идею сокращения длины тела в направлении движения, тем большего, чем выше скорость движения. Лоренц предположил возможность локального течения времени («местное время») в подвижной системе, по законам, отличающимся от закономерностей в неподвижной системе. Лоренц предложил модифицировать преобразования координат Галилея.

Постулаты Эйнштейна в специальной теории относительности

Решающий вклад в создание специальной, а затем и общей теории относительности был внесен Альбертом Эйнштейном. В 1905 году в журнале «Аннален фюр физик» 26-летний, никому неизвестный служащий швейцарского патентного бюро Альберт Эйнштейн опубликовал небольшую 3-страничную статью «К электродинамике движущихся сред». По утверждениям историков физики, о результатах опытов Майкельсона-Морли он не слышал.

Концепция Эйнштейна позволяет отказаться от существования эфира и построить теорию, называемую ныне специальной теорией относительности (СТО) и и подтверждаемая всеми известными сегодня опытами.

В основе СТО лежат два постулата.

    «Принцип постоянства скорости света».

Скорость света не зависит от скорости движения источника света, одинакова во всех инерциальных системах координат, и равна в вакууме с=3 10 8 м/с.

Позднее, в общей теории относительности (ОТО), опубликованной в 1916 году, утверждалось, что скорость света остается неизменной и в неинерциальных системах координат.

    Специальный принцип относительности.

Законы природы одинаковы (инвариантны, ковариантны) во всех инерциальных системах координат.

Эйнштейн позднее писал:

«Во всех инерциальных системах координат законы природы находятся в согласии. Физической реальностью обладает не точка пространства и не момент времени, когда что-либо произошло, а только само событие. Нет абсолютного (независимого от пространства отсчета) соотношения в пространстве, и нет абсолютного соотношения во времени, но есть абсолютное (независимое от пространства отсчета) соотношение в пространстве и времени» (подчеркнуто Эйнштейном).

Позднее Эйнштейн утверждал справедливость и этого постулата для всех, в том числе и неинерциальных, систем отсчета.

В математическом аппарате СТО используется четырехмерный xyzt пространственно-временной континуум (пространство Минковского) и преобразования координат Лоренца, как математическое отражение объективно существующих в материальном мире фактов.

Предположение об абсолютности скорости света приводит к целому ряду следствий, необычных и не наблюдаемых в условиях механики Ньютона. Одно из следствий постоянства скорости света состоит в отказе от абсолютного характера времени, который был привит в механике Ньютона. Нужно теперь допустить, что время течет по-разному в разных системах отсчета - события, одновременные в одной системе, окажутся неодновременными в другой.

Рассмотрим две инерциальные системы отсчета K и K ", движущиеся относительно друг друга. Пусть в темной комнате, движущейся с системой K ", вспыхивает лампа. Поскольку скорость света в системе K " равна (как и во всякой системе отсчета) c , то свет достигает обеих противоположных стен комнаты одновременно. Не то будет происходить с точки зрения наблюдателя в системе K . Скорость света в системе K также равна c , но так как стены комнаты движутся по отношению к системе K , то наблюдатель в системе K обнаружит, что свет коснется одной из стен раньше, чем другой, т.е. в системе K эти события являются неодновременными.

Таким образом, в механике Эйнштейна относительны не только свойства пространства, но и свойства времени .