Простая линейная регрессия. Корреляция и регрессия

При линейном типе связи между двумя изучаемыми признаками кроме расчета корреляций применяется расчет коэффициента регрессии.

В случае прямолинейной корреляционной связи каждому из изменений одного признака соответствует вполне определенное изменение другого признака. Однако коэффициент корреляции показывает эту связь лишь в относительных величинах - в долях единицы. С помощью же регрессионного анализа эту величину связи получают в именованных единицах. Та величина, на которую в среднем изменяется первый признак при изменении второго на единицу измерения, называется коэффициентом регрессии.

В отличие от корреляционного регрессионный анализ дает более широкую информацию, поскольку вычислением двух коэффициентов регрессии Rx/y и Rу/х возможно определить как зависимость первого признака от второго, так и второго от первого. Выражение регрессионной связи с помощью уравнения позволяет по определенному значению одного признака установить значение другого признака.

Коэффициент регрессии R представляет собой произведение коэффициента корреляции на отношение квадратических отклонений, вычисленных для каждого признака. Рассчитывается он по формуле

где, R - коэффициент регрессии; SХ - среднее квадратическое отклонение первого признака, который изменяется в связи с изменением второго; SУ - среднее квадратическое отклонение второго признака в связи с изменением которого изменяется первый признак; r - коэффициент корреляции между этими признаками; х - функция; у -аргумент.

По этой формуле определяется величина значения х при изменении у на единицу измерения. При необходимости обратного расчета можно найти величину у при изменении х на единицу измерения по формуле:


В этом случае активная роль в изменении одного признака по отношению к другому меняется, по сравнению с предыдущей формулой аргумент становится функцией и наоборот. Величины SX и SY принимаются в именованном выражении.

Между значениями г и R имеется четкая взаимосвязь, выражающаяся в том, что произведение регрессии х по у на регрессию у по х равно квадрату коэффициента корреляции, т. е.

Rx/y * Ry/x = r2

Это свидетельствует, что коэффициент корреляции представляет собой среднюю геометрическую из обоих значений коэффициентов регрессии данной выборки. Данная формула может быть использована для проверки правильности расчетов.

При обработке цифрового материала на счетных машинах могут применяться развернутые формулы коэффициента регрессии:

R или


Для коэффициента регрессии может быть рассчитана его ошибка репрезентативности. Ошибка коэффициента регрессии равна ошибке коэффициента корреляции, умноженной на отношение квадратических отношений:

Критерий достоверности коэффициента регрессии вычисляется по обычной формуле:

в итоге он равен критерию достоверности коэффициента корреляции:

Достоверность величины tR устанавливается по таблице Стьюдента при  = n - 2, где n - число пар наблюдений.

Криволинейная регрессия.

РЕГРЕССИЯ, КРИВОЛИНЕЙНАЯ . Любая нелинейная регрессия, в которой уравнение регрессии для изменений в одной переменной (у) как функции t изменений в другой (х) является квадратичным, кубическим или уравнение более высокого порядка. Хотя математически всегда возможно получить уравнение регрессии, которое будет соответствовать каждой "загогулине" кривой, большинство этих пертурбаций возникает в результате ошибок в составлении выборки или измерении, и такое "совершенное" соответствие ничего не дает. Не всегда легко определить, соответствует ли криволинейная регрессия набору данных, хотя существуют статистические тесты для определения того, значительно ли увеличивает каждая более высокая степень уравнения степ совпадения этого набора данных.

Аппроксимация кривой выполняется тем же путем с использованием метода наименьших квадратов, что и выравнивание по прямой линии. Линия регрессии должна удовлетворять условию минимума суммы квадратов расстояний до каждой точки корреляционного поля. В данном случае в уравнении (1) у представляет собой расчетное значение функции, определенное при помощи уравнения выбранной криволинейной связи по фактическим значениям х j. Например, если для аппроксимации связи выбрана парабола второго порядка, то y = а + b x + cx2, (14) .а разность между точкой, лежащей на кривой, и данной точкой корреляционного поля при соответствующем аргументе можно записать аналогично уравнению (3) в виде yj = yj (a + bx + cx2) (15) При этом сумма квадратов расстояний от каждой точки корреляционного поля до новой линии регрессии в случае параболы второго порядка будет иметь вид: S 2 = yj 2 = 2 (16) Исходя из условия минимума этой суммы, частные производные S 2 по а, b и с приравниваются к нулю. Выполнив необходимые преобразования, получим систему трех уравнений с тремя неизвестными для определения a, b и с. , y = m a + b x + c x 2 yx = a x + b x 2 + c x 2. yx2 = a x 2 + b x 3 + c x4 . (17). Решая систему уравнений относительно a, b и с, находим численные значения коэффициентов регрессии. Величины y, x, x2, yx, yx2, x3, x4.находятся непосредственно по данным производственных измерений. Оценкой тесноты связи при криволинейной зависимости служит теоретическое корреляционное отношение xу, представляющее собой корень квадратный из соотношения двух дисперсий: среднего квадрата р2 отклонений расчетных значений y" j функции по найденному уравнению регрессии от среднеарифметического значения Y величины y к среднему квадрату отклонений y2 фактических значений функции y j от ее среднеарифметического значения: xу = { р2 / y2 } 1/2 = { (y" j - Y)2 / (y j - Y)2 } 1/2 (18) Квадрат корреляционного отношения xу2 показывает долю полной изменчивости зависимой переменной у, обусловленную изменчивостью аргумента х. Этот показатель называется коэффициентом детерминации. В отлично от коэффициента корреляции величина корреляционного отношения может принимать только положительные значения от 0 до 1. При полном отсутствии связи корреляционное отношение равно нулю, при наличии функциональной связи оно равно единице, а при наличии регрессионной связи различной тесноты корреляционное отношение принимает значения между нулем и единицей. Выбор типа кривой имеет большое значение в регрессионном анализе, поскольку от вида выбранной взаимосвязи зависит точность аппроксимации и статистические оценки тесноты связи. Наиболее простой метод выбора типа кривой состоит в построении корреляционных полей и в подборе соответствующих типов регрессионных уравнений по расположению точек на этих полях. Методы регрессионного анализа позволяют отыскивать численные значения коэффициентов регрессии для сложных видов взаимосвязи параметров, описываемых, например, полиномами высоких степеней. Часто вид кривой может быть определен на основе физической сущности рассматриваемого процесса или явления. Полиномы высоких степеней имеет смысл применять для описания быстро меняющихся процессов в том случае, если пределы колебания параметров этих процессов значительные. Применительно к исследованиям металлургического процесса достаточно использовать кривые низших порядков, например параболу второго порядка. Эта кривая может иметь один экстремум, что, как показала практика, вполне достаточно для описания различных характеристик металлургического процесса. Результаты расчетов параметров парной корреляционной взаимосвязи были бы достоверны н представляли бы практическую ценность в том случае, если бы используемая информация была получена для условий широких пределов колебаний аргумента при постоянстве всех прочих параметров процесса. Следовательно, методы исследования парной корреляционной взаимосвязи параметров могут быть использованы для решения практических задач лишь тогда, когда существует уверенность в отсутствии других серьезных влияний на функцию, кроме анализируемого аргумента. В производственных условиях вести процесс таким образом продолжительное время невозможно. Однако если иметь информацию об основных параметрах процесса, влияющих на его результаты, то математическим путем можно исключить влияние этих параметров и выделить в “чистом виде” взаимосвязь интересующей нас функции и аргумента. Такая связь называется частной, или индивидуальной. Для ее определения используется метод множественной регрессии.

Корреляционное отношение.

Корреляционное отношение и индекс корреляции - это числовые характеристики, тесно связанные понятием случайной величины, а точнее с системой случайных величин. Поэтому для введения и определения их значения и роли необходимо пояснить понятие системы случайных величин и некоторые свойства присущие им.

Два или более случайные величины, описывающих некоторое явление называют системой или комплексом случайных величин.

Систему нескольких случайных величин X, Y, Z, …, W принято обозначать через (X, Y, Z, …, W).

Например, точка на плоскости описывается не одной координатой, а двумя, а в пространстве - даже тремя.

Свойства системы нескольких случайных величин не исчерпываются свойствами отдельных случайных величин, входящих в систему, а включают также взаимные связи (зависимости) между случайными величинами. Поэтому при изучении системы случайных величин следует обращать внимание на характер и степень зависимости. Эта зависимость может быть более или менее ярко выраженной, более или менее тесной. А в других случаях случайные величины оказаться практически независимыми.

Случайная величина Y называется независимой от случайной величины Х, если закон распределения случайной величины Y не зависит от того какое значение приняла величина Х.

Следует отметить, что зависимость и независимость случайных величин есть всегда явление взаимное: если Y не зависит от Х, то и величина Х не зависит от Y. Учитывая это, можно привести следующее определение независимости случайных величин.

Случайные величины Х и Y называются независимыми, если закон распределения каждой из них не зависит от того, какое значение приняла другая. В противном случае величины Х и Y называются зависимыми.

Законом распределения случайной величины называется всякое соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями.

Понятие "зависимости" случайных величин, которым пользуются в теории вероятностей, несколько отличается от обычного понятия "зависимости" величин, которым пользуются в математике. Так, математик под "зависимостью" подразумевает только один тип зависимости - полную, жесткую, так называемую функциональную зависимость. Две величины Х и Y называются функционально зависимыми, если, зная значение одного из них, можно точно определить значение другой.

В теории вероятностей встречаются несколько с иным типом зависимости - вероятностной зависимостью. Если величина Y связана с величиной Х вероятностной зависимостью, то, зная значение Х, нельзя точно указать значение Y, а можно указать её закон распределения, зависящий от того, какое значение приняла величина Х.

Вероятностная зависимость может быть более или менее тесной; по мере увеличения тесноты вероятностной зависимости она все более приближается к функциональной. Т.о., функциональную зависимость можно рассматривать как крайний, предельный случай наиболее тесной вероятностной зависимости. Другой крайний случай - полная независимость случайных величин. Между этими двумя крайними случаями лежат все градации вероятностной зависимости - от самой сильной до самой слабой.

Вероятностная зависимость между случайными величинами часто встречается на практике. Если случайные величины Х и Y находятся в вероятностной зависимости, то это не означает, что с изменением величины Х величина Y изменяется вполне определенным образом; это лишь означает, что с изменением величины Х величина Y имеет тенденцию также изменяться (возрастать или убывать при возрастании Х). Эта тенденция соблюдается лишь в общих чертах, а в каждом отдельном случае возможны отступления от неё.

Использование графического метода .
Этот метод применяют для наглядного изображения формы связи между изучаемыми экономическими показателями. Для этого в прямоугольной системе координат строят график, по оси ординат откладывают индивидуальные значения результативного признака Y, а по оси абсцисс - индивидуальные значения факторного признака X.
Совокупность точек результативного и факторного признаков называется полем корреляции .
На основании поля корреляции можно выдвинуть гипотезу (для генеральной совокупности) о том, что связь между всеми возможными значениями X и Y носит линейный характер.

Линейное уравнение регрессии имеет вид y = bx + a + ε
Здесь ε - случайная ошибка (отклонение, возмущение).
Причины существования случайной ошибки:
1. Невключение в регрессионную модель значимых объясняющих переменных;
2. Агрегирование переменных. Например, функция суммарного потребления – это попытка общего выражения совокупности решений отдельных индивидов о расходах. Это лишь аппроксимация отдельных соотношений, которые имеют разные параметры.
3. Неправильное описание структуры модели;
4. Неправильная функциональная спецификация;
5. Ошибки измерения.
Так как отклонения ε i для каждого конкретного наблюдения i – случайны и их значения в выборке неизвестны, то:
1) по наблюдениям x i и y i можно получить только оценки параметров α и β
2) Оценками параметров α и β регрессионной модели являются соответственно величины а и b, которые носят случайный характер, т.к. соответствуют случайной выборке;
Тогда оценочное уравнение регрессии (построенное по выборочным данным) будет иметь вид y = bx + a + ε, где e i – наблюдаемые значения (оценки) ошибок ε i , а и b соответственно оценки параметров α и β регрессионной модели, которые следует найти.
Для оценки параметров α и β - используют МНК (метод наименьших квадратов).
Система нормальных уравнений.

Для наших данных система уравнений имеет вид:

10a + 356b = 49
356a + 2135b = 9485

Из первого уравнения выражаем а и подставим во второе уравнение
Получаем b = 68.16, a = 11.17

Уравнение регрессии :
y = 68.16 x - 11.17

1. Параметры уравнения регрессии.
Выборочные средние.



Выборочные дисперсии.


Среднеквадратическое отклонение

1.1. Коэффициент корреляции
Рассчитываем показатель тесноты связи. Таким показателем является выборочный линейный коэффициент корреляции, который рассчитывается по формуле:

Линейный коэффициент корреляции принимает значения от –1 до +1.
Связи между признаками могут быть слабыми и сильными (тесными). Их критерии оцениваются по шкале Чеддока :
0.1 < r xy < 0.3: слабая;
0.3 < r xy < 0.5: умеренная;
0.5 < r xy < 0.7: заметная;
0.7 < r xy < 0.9: высокая;
0.9 < r xy < 1: весьма высокая;
В нашем примере связь между признаком Y фактором X весьма высокая и прямая.

1.2. Уравнение регрессии (оценка уравнения регрессии).

Линейное уравнение регрессии имеет вид y = 68.16 x -11.17
Коэффициентам уравнения линейной регрессии можно придать экономический смысл. Коэффициент уравнения регрессии показывает, на сколько ед. изменится результат при изменении фактора на 1 ед.
Коэффициент b = 68.16 показывает среднее изменение результативного показателя (в единицах измерения у) с повышением или понижением величины фактора х на единицу его измерения. В данном примере с увеличением на 1 единицу y повышается в среднем на 68.16.
Коэффициент a = -11.17 формально показывает прогнозируемый уровень у, но только в том случае, если х=0 находится близко с выборочными значениями.
Но если х=0 находится далеко от выборочных значений x , то буквальная интерпретация может привести к неверным результатам, и даже если линия регрессии довольно точно описывает значения наблюдаемой выборки, нет гарантий, что также будет при экстраполяции влево или вправо.
Подставив в уравнение регрессии соответствующие значения x , можно определить выровненные (предсказанные) значения результативного показателя y(x) для каждого наблюдения.
Связь между у и x определяет знак коэффициента регрессии b (если > 0 – прямая связь, иначе - обратная). В нашем примере связь прямая.

1.3. Коэффициент эластичности.
Коэффициенты регрессии (в примере b) нежелательно использовать для непосредственной оценки влияния факторов на результативный признак в том случае, если существует различие единиц измерения результативного показателя у и факторного признака х.
Для этих целей вычисляются коэффициенты эластичности и бета - коэффициенты. Коэффициент эластичности находится по формуле:


Он показывает, на сколько процентов в среднем изменяется результативный признак у при изменении факторного признака х на 1%. Он не учитывает степень колеблемости факторов.
В нашем примере коэффициент эластичности больше 1. Следовательно, при изменении Х на 1%, Y изменится более чем на 1%. Другими словами - Х существенно влияет на Y.
Бета – коэффициент показывает, на какую часть величины своего среднего квадратичного отклонения изменится в среднем значение результативного признака при изменении факторного признака на величину его среднеквадратического отклонения при фиксированном на постоянном уровне значении остальных независимых переменных:

Т.е. увеличение x на величину среднеквадратического отклонения этого показателя приведет к увеличению среднего Y на 0.9796 среднеквадратичного отклонения этого показателя.

1.4. Ошибка аппроксимации.
Оценим качество уравнения регрессии с помощью ошибки абсолютной аппроксимации.


Поскольку ошибка больше 15%, то данное уравнение не желательно использовать в качестве регрессии.

1.6. Коэффициент детерминации.
Квадрат (множественного) коэффициента корреляции называется коэффициентом детерминации, который показывает долю вариации результативного признака, объясненную вариацией факторного признака.
Чаще всего, давая интерпретацию коэффициента детерминации, его выражают в процентах.
R 2 = 0.98 2 = 0.9596
т.е. в 95.96 % случаев изменения x приводят к изменению у. Другими словами - точность подбора уравнения регрессии - высокая. Остальные 4.04 % изменения Y объясняются факторами, не учтенными в модели.

x y x 2 y 2 x y y(x) (y i -y cp) 2 (y-y(x)) 2 (x i -x cp) 2 |y - y x |:y
0.371 15.6 0.1376 243.36 5.79 14.11 780.89 2.21 0.1864 0.0953
0.399 19.9 0.1592 396.01 7.94 16.02 559.06 15.04 0.163 0.1949
0.502 22.7 0.252 515.29 11.4 23.04 434.49 0.1176 0.0905 0.0151
0.572 34.2 0.3272 1169.64 19.56 27.81 87.32 40.78 0.0533 0.1867
0.607 44.5 .3684 1980.25 27.01 30.2 0.9131 204.49 0.0383 0.3214
0.655 26.8 0.429 718.24 17.55 33.47 280.38 44.51 0.0218 0.2489
0.763 35.7 0.5822 1274.49 27.24 40.83 61.54 26.35 0.0016 0.1438
0.873 30.6 0.7621 936.36 26.71 48.33 167.56 314.39 0.0049 0.5794
2.48 161.9 6.17 26211.61 402 158.07 14008.04 14.66 2.82 0.0236
7.23 391.9 9.18 33445.25 545.2 391.9 16380.18 662.54 3.38 1.81

2. Оценка параметров уравнения регрессии.
2.1. Значимость коэффициента корреляции.

По таблице Стьюдента с уровнем значимости α=0.05 и степенями свободы k=7 находим t крит:
t крит = (7;0.05) = 1.895
где m = 1 - количество объясняющих переменных.
Если t набл > t критич, то полученное значение коэффициента корреляции признается значимым (нулевая гипотеза, утверждающая равенство нулю коэффициента корреляции, отвергается).
Поскольку t набл > t крит, то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициент корреляции статистически - значим
В парной линейной регрессии t 2 r = t 2 b и тогда проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.

2.3. Анализ точности определения оценок коэффициентов регрессии.
Несмещенной оценкой дисперсии возмущений является величина:


S 2 y = 94.6484 - необъясненная дисперсия (мера разброса зависимой переменной вокруг линии регрессии).
S y = 9.7287 - стандартная ошибка оценки (стандартная ошибка регрессии).
S a - стандартное отклонение случайной величины a.


S b - стандартное отклонение случайной величины b.

2.4. Доверительные интервалы для зависимой переменной.
Экономическое прогнозирование на основе построенной модели предполагает, что сохраняются ранее существовавшие взаимосвязи переменных и на период упреждения.
Для прогнозирования зависимой переменной результативного признака необходимо знать прогнозные значения всех входящих в модель факторов.
Прогнозные значения факторов подставляют в модель и получают точечные прогнозные оценки изучаемого показателя. (a + bx p ± ε)
где

Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и X p = 1 (-11.17 + 68.16*1 ± 6.4554)
(50.53;63.44)

Индивидуальные доверительные интервалы для Y при данном значении X .
(a + bx i ± ε)
где

x i y = -11.17 + 68.16x i ε i y min y max
0.371 14.11 19.91 -5.8 34.02
0.399 16.02 19.85 -3.83 35.87
0.502 23.04 19.67 3.38 42.71
0.572 27.81 19.57 8.24 47.38
0.607 30.2 19.53 10.67 49.73
0.655 33.47 19.49 13.98 52.96
0.763 40.83 19.44 21.4 60.27
0.873 48.33 19.45 28.88 67.78
2.48 158.07 25.72 132.36 183.79

С вероятностью 95% можно гарантировать, что значения Y при неограниченно большом числе наблюдений не выйдет за пределы найденных интервалов.

2.5. Проверка гипотез относительно коэффициентов линейного уравнения регрессии.
1) t-статистика. Критерий Стьюдента.
Проверим гипотезу H 0 о равенстве отдельных коэффициентов регрессии нулю (при альтернативе H 1 не равно) на уровне значимости α=0.05.
t крит = (7;0.05) = 1.895


Поскольку 12.8866 > 1.895, то статистическая значимость коэффициента регрессии b подтверждается (отвергаем гипотезу о равенстве нулю этого коэффициента).


Поскольку 2.0914 > 1.895, то статистическая значимость коэффициента регрессии a подтверждается (отвергаем гипотезу о равенстве нулю этого коэффициента).

Доверительный интервал для коэффициентов уравнения регрессии.
Определим доверительные интервалы коэффициентов регрессии, которые с надежность 95% будут следующими:
(b - t крит S b ; b + t крит S b)
(68.1618 - 1.895 5.2894; 68.1618 + 1.895 5.2894)
(58.1385;78.1852)
С вероятностью 95% можно утверждать, что значение данного параметра будут лежать в найденном интервале.
(a - t a)
(-11.1744 - 1.895 5.3429; -11.1744 + 1.895 5.3429)
(-21.2992;-1.0496)
С вероятностью 95% можно утверждать, что значение данного параметра будут лежать в найденном интервале.

2) F-статистики. Критерий Фишера.
Проверка значимости модели регрессии проводится с использованием F-критерия Фишера, расчетное значение которого находится как отношение дисперсии исходного ряда наблюдений изучаемого показателя и несмещенной оценки дисперсии остаточной последовательности для данной модели.
Если расчетное значение с lang=EN-US>n-m-1) степенями свободы больше табличного при заданном уровне значимости, то модель считается значимой.

где m – число факторов в модели.
Оценка статистической значимости парной линейной регрессии производится по следующему алгоритму:
1. Выдвигается нулевая гипотеза о том, что уравнение в целом статистически незначимо: H 0: R 2 =0 на уровне значимости α.
2. Далее определяют фактическое значение F-критерия:


где m=1 для парной регрессии.
3. Табличное значение определяется по таблицам распределения Фишера для заданного уровня значимости, принимая во внимание, что число степеней свободы для общей суммы квадратов (большей дисперсии) равно 1 и число степеней свободы остаточной суммы квадратов (меньшей дисперсии) при линейной регрессии равно n-2.
4. Если фактическое значение F-критерия меньше табличного, то говорят, что нет основания отклонять нулевую гипотезу.
В противном случае, нулевая гипотеза отклоняется и с вероятностью (1-α) принимается альтернативная гипотеза о статистической значимости уравнения в целом.
Табличное значение критерия со степенями свободы k1=1 и k2=7, Fkp = 5.59
Поскольку фактическое значение F > Fkp, то коэффициент детерминации статистически значим (Найденная оценка уравнения регрессии статистически надежна).

Проверка на наличие автокорреляции остатков .
Важной предпосылкой построения качественной регрессионной модели по МНК является независимость значений случайных отклонений от значений отклонений во всех других наблюдениях. Это гарантирует отсутствие коррелированности между любыми отклонениями и, в частности, между соседними отклонениями.
Автокорреляция (последовательная корреляция) определяется как корреляция между наблюдаемыми показателями, упорядоченными во времени (временные ряды) или в пространстве (перекрестные ряды). Автокорреляция остатков (отклонений) обычно встречается в регрессионном анализе при использовании данных временных рядов и очень редко при использовании перекрестных данных.
В экономических задачах значительно чаще встречается положительная автокорреляция , нежели отрицательная автокорреляция . В большинстве случаев положительная автокорреляция вызывается направленным постоянным воздействием некоторых неучтенных в модели факторов.
Отрицательная автокорреляция фактически означает, что за положительным отклонением следует отрицательное и наоборот. Такая ситуация может иметь место, если ту же зависимость между спросом на прохладительные напитки и доходами рассматривать по сезонным данным (зима-лето).
Среди основных причин, вызывающих автокорреляцию , можно выделить следующие:
1. Ошибки спецификации. Неучет в модели какой-либо важной объясняющей переменной либо неправильный выбор формы зависимости обычно приводят к системным отклонениям точек наблюдения от линии регрессии, что может обусловить автокорреляцию.
2. Инерция. Многие экономические показатели (инфляция, безработица, ВНП и т.д.) обладают определенной цикличностью, связанной с волнообразностью деловой активности. Поэтому изменение показателей происходит не мгновенно, а обладает определенной инертностью.
3. Эффект паутины. Во многих производственных и других сферах экономические показатели реагируют на изменение экономических условий с запаздыванием (временным лагом).
4. Сглаживание данных. Зачастую данные по некоторому продолжительному временному периоду получают усреднением данных по составляющим его интервалам. Это может привести к определенному сглаживанию колебаний, которые имелись внутри рассматриваемого периода, что в свою очередь может служить причиной автокорреляции.
Последствия автокорреляции схожи с последствиями гетероскедастичности : выводы по t- и F-статистикам, определяющие значимость коэффициента регрессии и коэффициента детерминации, возможно, будут неверными.

Обнаружение автокорреляции

1. Графический метод
Есть ряд вариантов графического определения автокорреляции. Один из них увязывает отклонения e i с моментами их получения i. При этом по оси абсцисс откладывают либо время получения статистических данных, либо порядковый номер наблюдения, а по оси ординат – отклонения e i (либо оценки отклонений).
Естественно предположить, что если имеется определенная связь между отклонениями, то автокорреляция имеет место. Отсутствие зависимости скоре всего будет свидетельствовать об отсутствии автокорреляции.
Автокорреляция становится более наглядной, если построить график зависимости e i от e i-1 .

Критерий Дарбина-Уотсона .
Этот критерий является наиболее известным для обнаружения автокорреляции.
При статистическом анализе уравнения регрессии на начальном этапе часто проверяют выполнимость одной предпосылки: условия статистической независимости отклонений между собой. При этом проверяется некоррелированность соседних величин e i .

y y(x) e i = y-y(x) e 2 (e i - e i-1) 2
15.6 14.11 1.49 2.21 0
19.9 16.02 3.88 15.04 5.72
22.7 23.04 -0.3429 0.1176 17.81
34.2 27.81 6.39 40.78 45.28
44.5 30.2 14.3 204.49 62.64
26.8 33.47 -6.67 44.51 439.82
35.7 40.83 -5.13 26.35 2.37
30.6 48.33 -17.73 314.39 158.7
161.9 158.07 3.83 14.66 464.81
662.54 1197.14

Для анализа коррелированности отклонений используют статистику Дарбина-Уотсона:

Критические значения d 1 и d 2 определяются на основе специальных таблиц для требуемого уровня значимости α, числа наблюдений n = 9 и количества объясняющих переменных m=1.
Автокорреляция отсутствует, если выполняется следующее условие:
d 1 < DW и d 2 < DW < 4 - d 2 .
Не обращаясь к таблицам, можно пользоваться приблизительным правилом и считать, что автокорреляция остатков отсутствует, если 1.5 < DW < 2.5. Для более надежного вывода целесообразно обращаться к табличным значениям.

Коэффициент регрессии - абсолютная величина, на которую в среднем изменяется величина одного признака при изменении другого связанного с ним признака на установленную единицу измерения. Определение регрессии. Связь между у и x определяет знак коэффициента регрессии b (если > 0 – прямая связь, иначе — обратная). Модель линейной регрессии является часто используемой и наиболее изученной в эконометрике.

1.4. Ошибка аппроксимации.Оценим качество уравнения регрессии с помощью ошибки абсолютной аппроксимации. Прогнозные значения факторов подставляют в модель и получают точечные прогнозные оценки изучаемого показателя. Таким образом, коэффициенты регрессии ха­рактеризуют степень значимости отдельных факторов для повышения уровня результативного показателя.

Коэффициент регрессии

Рассмотрим теперь задачу 1 из заданий по анализу регрессии, приведенную на с. 300-301. Один из математических результатов теории линейной регрессии говорит, что оценка N, является несмещенной оценкой с минимальной дисперсией в классе всех линейных несмещенных оценок. Например, можно рассчитать число простудных заболеваний в среднем при определенных значениях среднемесячной температуры воздуха в осенне-зимний период.

Линия регрессии и уравнение регрессии

Сигма регрессии используется при построении шкалы регрессии, которая отражает отклонение величин результативного признака от среднего его значения, отложенного на линии регрессии. 1, х2, х3 и соответствующих им средних значений у1, у2 у3, а также наименьших (у - σrу/х)и наибольших (у + σrу/х) значений (у) построить шкалу регрессии. Вывод. Таким образом, шкала регрессии в пределах расчетных величин массы тела позволяет определить ее при любом другом значении роста или оценить индивидуальное развитие ребенка.

В матричной форме уравнение регрессии (УР) записывается в виде: Y=BX+U{\displaystyle Y=BX+U}, где U{\displaystyle U} - матрица ошибок. Статистическое использование слова «регрессия» исходит из явления, известного как регрессия к среднему, приписываемого сэру Френсису Гальтону (1889).

Парную линейную регрессию можно расширить, включив в нее более одной независимой переменной; в этом случае она известна как множественная регрессия. И для выбросов, и для «влиятельных» наблюдений (точек) используют модели, как с их включением, так и без них, обращают внимание на изменение оценки (коэффициентов регрессии).

Из-за линейного соотношения и мы ожидаем, что изменяется, по мере того как изменяется, и называем это вариацией, которая обусловлена или объясняется регрессией. Если это так, то большая часть вариации будет объясняться регрессией, а точки будут лежать близко к линии регрессии, т.е. линия хорошо соответствует данным. Разность представляет собой процент дисперсии который нельзя объяснить регрессией.

Этот метод применяют для наглядного изображения формы связи между изучаемыми экономическими показателями. На основании поля корреляции можно выдвинуть гипотезу (для генеральной совокупности) о том, что связь между всеми возможными значениями X и Y носит линейный характер.

Причины существования случайной ошибки: 1. Невключение в регрессионную модель значимых объясняющих переменных; 2. Агрегирование переменных. Система нормальных уравнений. В нашем примере связь прямая. Для прогнозирования зависимой переменной результативного признака необходимо знать прогнозные значения всех входящих в модель факторов.

Сравнение коэффициентов корреляции и регрессии

С вероятностью 95% можно гарантировать, что значения Y при неограниченно большом числе наблюдений не выйдет за пределы найденных интервалов. Если расчетное значение с lang=EN-US>n-m-1) степенями свободы больше табличного при заданном уровне значимости, то модель считается значимой. Это гарантирует отсутствие коррелированности между любыми отклонениями и, в частности, между соседними отклонениями.

Коэффициенты регрессии и их интерпретация

В большинстве случаев положительная автокорреляция вызывается направленным постоянным воздействием некоторых неучтенных в модели факторов. Отрицательная автокорреляция фактически означает, что за положительным отклонением следует отрицательное и наоборот.

Что такое регрессия?

2. Инерция. Многие экономические показатели (инфляция, безработица, ВНП и т.д.) обладают определенной цикличностью, связанной с волнообразностью деловой активности. Во многих производственных и других сферах экономические показатели реагируют на изменение экономических условий с запаздыванием (временным лагом).

Если проведена предвари­тельная стандартизация факторных показателей, то b0 равняется сред­нему значению результативного показателя в совокупности. Конкретные значения коэффициен­тов регрессии определяют по эмпирическим данным согласно методу наименьших квадратов (в результате решения систем нормальных урав­нений).

Линейное уравнение регрессии имеет вид y = bx + a + ε Здесь ε — случайная ошибка (отклонение, возмущение). Поскольку ошибка больше 15%, то данное уравнение не желательно использовать в качестве регрессии. Подставив в уравнение регрессии соответствующие значения x, можно определить выровненные (предсказанные) значения результативного показателя y(x) для каждого наблюдения.

Понятие регрессии . Зависимость между переменными величинами x и y может быть описана разными способами. В частности, любую форму связи можно выразить уравнением общего вида , гдеy рассматривается в качестве зависимой переменной, или функции от другой – независимой переменной величины x, называемой аргументом . Соответствие между аргументом и функцией может быть задано таблицей, формулой, графиком и т.д. Изменение функции в зависимости от изменения одного или нескольких аргументов называется регрессией . Все средства, применяемые для описания корреляционных связей, составляет содержание регрессионного анализа .

Для выражения регрессии служат корреляционные уравнения, или уравнения регрессии, эмпирические и теоретически вычисленные ряды регрессии, их графики, называемые линиями регрессии, а также коэффициенты линейной и нелинейной регрессии.

Показатели регрессии выражают корреляционную связь двусторонне, учитывая изменение усредненных значений признакаY при изменении значений x i признака X , и, наоборот, показывают изменение средних значений признакаX по измененным значениям y i признака Y . Исключение составляют временные ряды, или ряды динамики, показывающие изменение признаков во времени. Регрессия таких рядов является односторонней.

Различных форм и видов корреляционных связей много. Задача сводится к тому, чтобы в каждом конкретном случае выявить форму связи и выразить ее соответствующим корреляционным уравнением, что позволяет предвидеть возможные изменения одного признака Y на основании известных изменений другого X , связанного с первым корреляционно.

12.1 Линейная регрессия

Уравнение регрессии. Результаты наблюдений, проведенных над тем или иным биологическим объектом по корреляционно связанным признакам x и y , можно изобразить точками на плоскости, построив систему прямоугольных координат. В результате получается некая диаграмма рассеяния, позволяющая судить о форме и тесноте связи между варьирующими признаками. Довольно часто эта связь выглядит в виде прямой или может быть аппроксимирована прямой линией.

Линейная зависимость между переменными x и y описывается уравнением общего вида , гдеa, b, c, d, … – параметры уравнения, определяющие соотношения между аргументами x 1 , x 2 , x 3 , …, x m и функций .

В практике учитывают не все возможные, а лишь некоторые аргументы, в простейшем случае – всего один:

В уравнении линейной регрессии (1) a – свободный член, а параметр b определяет наклон линии регрессии по отношению к осям прямоугольных координат. В аналитической геометрии этот параметр называют угловым коэффициентом , а в биометрии – коэффициентом регрессии . Наглядное представление об этом параметре и о положении линий регрессии Y по X и X по Y в системе прямоугольных координат дает рис.1.

Рис. 1 Линии регрессии Y по X и X поY в системе

прямоугольных координат

Линии регрессии, как показано на рис.1, пересекаются в точке О (,), соответствующей средним арифметическим значениям корреляционно связанных друг с другом признаковY и X . При построении графиков регрессии по оси абсцисс откладывают значения независимой переменной X, а по оси ординат – значения зависимой переменной, или функции Y. Линия АВ, проходящая через точку О (,) соответствует полной (функциональной) зависимости между переменными величинамиY и X , когда коэффициент корреляции . Чем сильнее связь междуY и X , тем ближе линии регрессии к АВ, и, наоборот, чем слабее связь между этими величинами, тем более удаленными оказываются линии регрессии от АВ. При отсутствии связи между признаками линии регрессии оказываются под прямым углом по отношению друг к другу и .

Поскольку показатели регрессии выражают корреляционную связь двусторонне, уравнение регрессии (1) следует записывать так:

По первой формуле определяют усредненные значения при изменении признакаX на единицу меры, по второй – усредненные значения при изменении на единицу меры признакаY .

Коэффициент регрессии. Коэффициент регрессии показывает, насколько в среднем величина одного признака y изменяется при изменении на единицу меры другого, корреляционно связанного с Y признака X . Этот показатель определяют по формуле

Здесь значения s умножают на размеры классовых интервалов λ , если их находили по вариационным рядам или корреляционным таблицам.

Коэффициент регрессии можно вычислить минуя расчет средних квадратичных отклонений s y и s x по формуле

Если же коэффициент корреляции неизвестен, коэффициент регрессии определяют следующим образом:

Связь между коэффициентами регрессии и корреляции. Сравнивая формулы (11.1) (тема 11) и (12.5), видим: в их числителе одна и та же величина , что указывает на наличие связи между этими показателями. Эта связь выражается равенством

Таким образом, коэффициент корреляции равен средней геометрической из коэффициентов b yx и b xy . Формула (6) позволяет, во-первых, по известным значениям коэффициентов регрессии b yx и b xy определять коэффициент регрессии R xy , а во-вторых, проверять правильность расчета этого показателя корреляционной связи R xy между варьирующими признаками X и Y .

Как и коэффициент корреляции, коэффициент регрессии характеризует только линейную связь и сопровождается знаком плюс при положительной и знаком минус при отрицательной связи.

Определение параметров линейной регрессии. Известно, что сумма квадратов отклонений вариант x i от средней есть величина наименьшая, т.е.. Эта теорема составляет основу метода наименьших квадратов. В отношении линейной регрессии [см. формулу (1)] требованию этой теоремы удовлетворяет некоторая система уравнений, называемыхнормальными :

Совместное решение этих уравнений относительно параметров a и b приводит к следующим результатам:

;

;

, откуда и.

Учитывая двусторонний характер связи между переменными Y и X , формулу для определения параметра а следует выразить так:

и . (7)

Параметр b , или коэффициент регрессии, определяют по следующим формулам:

Построение эмпирических рядов регрессии. При наличии большого числа наблюдений регрессионный анализ начинается с построения эмпирических рядов регрессии. Эмпирический ряд регрессии образуется путем вычисления по значениям одного варьирующего признака X средних значений другого, связанного корреляционно сX признака Y . Иными словами, построение эмпирических рядов регрессии сводится к нахождению групповых средних ииз соответствующих значений признаковY и X.

Эмпирический ряд регрессии – это двойной ряд чисел, которые можно изобразить точками на плоскости, а затем, соединив эти точки отрезками прямой, получить эмпирическую линию регрессии. Эмпирические ряды регрессии, особенно их графики, называемые линиями регрессии , дают наглядное представление о форме и тесноте корреляционной зависимости между варьирующими признаками.

Выравнивание эмпирических рядов регрессии. Графики эмпирических рядов регрессии оказываются, как правило, не плавно идущими, а ломаными линиями. Это объясняется тем, что наряду с главными причинами, определяющими общую закономерность в изменчивости коррелируемых признаков, на их величине сказывается влияние многочисленных второстепенных причин, вызывающих случайные колебания узловых точек регрессии. Чтобы выявить основную тенденцию (тренд) сопряженной вариации коррелируемых признаков, нужно заменить ломанные линии на гладкие, плавно идущие линии регрессии. Процесс замены ломанных линий на плавно идущие называют выравниванием эмпирических рядов и линий регрессий .

Графический способ выравнивания. Это наиболее простой способ, не требующий вычислительной работы. Его сущность сводится к следующему. Эмпирический ряд регрессии изображают в виде графика в системе прямоугольных координат. Затем визуально намечаются средние точки регрессии, по которым с помощью линейки или лекала проводят сплошную линию. Недостаток этого способа очевиден: он не исключает влияние индивидуальных свойств исследователя на результаты выравнивания эмпирических линий регрессии. Поэтому в тех случаях, когда необходима более высокая точность при замене ломанных линий регрессии на плавно идущие, используют другие способы выравнивания эмпирических рядов.

Способ скользящей средней. Суть этого способа сводится к последовательному вычислению средних арифметических из двух или трех соседних членов эмпирического ряда. Этот способ особенно удобен в тех случаях, когда эмпирический ряд представлен большим числом членов, так что потеря двух из них – крайних, что неизбежно при этом способе выравнивания, заметно не отразится на его структуре.

Метод наименьших квадратов. Этот способ предложен в начале XIX столетия А.М. Лежандром и независимо от него К. Гауссом. Он позволяет наиболее точно выравнивать эмпирические ряды. Этот метод, как было показано выше, основан на предположении, что сумма квадратов отклонений вариант x i от их средней есть величина минимальная, т.е.. Отсюда и название метода, который применяется не только в экологии, но и в технике. Метод наименьших квадратов объективен и универсален, его применяют в самых различных случаях при отыскании эмпирических уравнений рядов регрессии и определении их параметров.

Требование метода наименьших квадратов заключается в том, что теоретические точки линии регрессии должны быть получены таким образом, чтобы сумма квадратов отклонений от этих точек для эмпирических наблюденийy i была минимальной, т.е.

Вычисляя в соответствии с принципами математического анализа минимум этого выражения и определенным образом преобразуя его, можно получить систему так называемых нормальных уравнений , в которых неизвестными величинами оказываются искомые параметры уравнения регрессии, а известные коэффициенты определяются эмпирическими величинами признаков, обычно суммами их значений и их перекрестных произведений.

Множественная линейная регрессия. Зависимость между несколькими переменными величинами принято выражать уравнением множественной регрессии, которая может быть линейной и нелинейной . В простейшем виде множественная регрессия выражается уравнением с двумя независимыми переменными величинами (x , z ):

где a – свободный член уравнения; b и c – параметры уравнения. Для нахождения параметров уравнения (10) (по способу наименьших квадратов) применяют следующую систему нормальных уравнений:

Ряды динамики. Выравнивание рядов. Изменение признаков во времени образует так называемые временные ряды или ряды динамики . Характерной особенностью таких рядов является то, что в качестве независимой переменной X здесь всегда выступает фактор времени, а зависимой Y – изменяющийся признак. В зависимости от рядов регрессии зависимость между переменными X и Y носит односторонний характер, так как фактор времени не зависит от изменчивости признаков. Несмотря на указанные особенности, ряды динамики можно уподобить рядам регрессии и обрабатывать их одними и теми же методами.

Как и ряды регрессии, эмпирические ряды динамики несут на себе влияние не только основных, но и многочисленных второстепенных (случайных) факторов, затушевывающих ту главную тенденцию в изменчивости признаков, которая на языке статистики называют трендом .

Анализ рядов динамики начинается с выявления формы тренда. Для этого временной ряд изображают в виде линейного графика в системе прямоугольных координат. При этом по оси абсцисс откладывают временные точки (годы, месяцы и другие единицы времени), а по оси ординат – значения зависимой переменной Y. При наличии линейной зависимости между переменными X и Y (линейного тренда) для выравнивания рядов динамики способом наименьших квадратов наиболее подходящим является уравнение регрессии в виде отклонений членов ряда зависимой переменной Y от средней арифметической ряда независимой переменнойX:

Здесь – параметр линейной регрессии.

Числовые характеристики рядов динамики. К числу основных обобщающих числовых характеристик рядов динамики относят среднюю геометрическую и близкую к ней среднюю арифметическуювеличины. Они характеризуют среднюю скорость, с какой изменяется величина зависимой переменной за определенные периоды времени:

Оценкой изменчивости членов ряда динамики служит среднее квадратическое отклонение . При выборе уравнений регрессии для описания рядов динамики учитывают форму тренда, которая может быть линейной (или приведена к линейной) и нелинейной. О правильности выбора уравнения регрессии обычно судят по сходству эмпирически наблюденных и вычисленных значений зависимой переменной. Более точным в решении этой задачи является метод дисперсионного анализа регрессии (тема 12 п.4).

Корреляция рядов динамики. Нередко приходится сопоставлять динамику параллельно идущих временных рядов, связанных друг с другом некоторыми общими условиями, например выяснить связь между производством сельскохозяйственной продукции и ростом поголовья скота за определенный промежуток времени. В таких случаях характеристикой связи между переменными X и Y служит коэффициент корреляции R xy (при наличии линейного тренда).

Известно, что тренд рядов динамики, как правило, затушевывается колебаниями членов ряда зависимой переменной Y. Отсюда возникает задача двоякого рода: измерение зависимости между сопоставляемыми рядами, не исключая тренд, и измерение зависимости между соседними членами одного и того же ряда, исключая тренд. В первом случае показателем тесноты связи между сопоставляемыми рядами динамики служит коэффициент корреляции (если связь линейна), во втором – коэффициент автокорреляции . Эти показатели имеют разные значения, хотя и вычисляются по одним и тем же формулам (см. тему 11).

Нетрудно заметить, что на значении коэффициента автокорреляции сказывается изменчивость членов ряда зависимой переменной: чем меньше члены ряда отклоняются от тренда, тем выше коэффициент автокорреляции, и наоборот.

Регрессионный анализ — это статистический метод исследования, позволяющий показать зависимость того или иного параметра от одной либо нескольких независимых переменных. В докомпьютерную эру его применение было достаточно затруднительно, особенно если речь шла о больших объемах данных. Сегодня, узнав как построить регрессию в Excel, можно решать сложные статистические задачи буквально за пару минут. Ниже представлены конкретные примеры из области экономики.

Виды регрессии

Само это понятие было введено в математику в 1886 году. Регрессия бывает:

  • линейной;
  • параболической;
  • степенной;
  • экспоненциальной;
  • гиперболической;
  • показательной;
  • логарифмической.

Пример 1

Рассмотрим задачу определения зависимости количества уволившихся членов коллектива от средней зарплаты на 6 промышленных предприятиях.

Задача. На шести предприятиях проанализировали среднемесячную заработную плату и количество сотрудников, которые уволились по собственному желанию. В табличной форме имеем:

Количество уволившихся

Зарплата

30000 рублей

35000 рублей

40000 рублей

45000 рублей

50000 рублей

55000 рублей

60000 рублей

Для задачи определения зависимости количества уволившихся работников от средней зарплаты на 6 предприятиях модель регрессии имеет вид уравнения Y = а 0 + а 1 x 1 +…+а k x k , где х i — влияющие переменные, a i — коэффициенты регрессии, a k — число факторов.

Для данной задачи Y — это показатель уволившихся сотрудников, а влияющий фактор — зарплата, которую обозначаем X.

Использование возможностей табличного процессора «Эксель»

Анализу регрессии в Excel должно предшествовать применение к имеющимся табличным данным встроенных функций. Однако для этих целей лучше воспользоваться очень полезной надстройкой «Пакет анализа». Для его активации нужно:

  • с вкладки «Файл» перейти в раздел «Параметры»;
  • в открывшемся окне выбрать строку «Надстройки»;
  • щелкнуть по кнопке «Перейти», расположенной внизу, справа от строки «Управление»;
  • поставить галочку рядом с названием «Пакет анализа» и подтвердить свои действия, нажав «Ок».

Если все сделано правильно, в правой части вкладки «Данные», расположенном над рабочим листом «Эксель», появится нужная кнопка.

в Excel

Теперь, когда под рукой есть все необходимые виртуальные инструменты для осуществления эконометрических расчетов, можем приступить к решению нашей задачи. Для этого:

  • щелкаем по кнопке «Анализ данных»;
  • в открывшемся окне нажимаем на кнопку «Регрессия»;
  • в появившуюся вкладку вводим диапазон значений для Y (количество уволившихся работников) и для X (их зарплаты);
  • подтверждаем свои действия нажатием кнопки «Ok».

В результате программа автоматически заполнит новый лист табличного процессора данными анализа регрессии. Обратите внимание! В Excel есть возможность самостоятельно задать место, которое вы предпочитаете для этой цели. Например, это может быть тот же лист, где находятся значения Y и X, или даже новая книга, специально предназначенная для хранения подобных данных.

Анализ результатов регрессии для R-квадрата

В Excel данные полученные в ходе обработки данных рассматриваемого примера имеют вид:

Прежде всего, следует обратить внимание на значение R-квадрата. Он представляет собой коэффициент детерминации. В данном примере R-квадрат = 0,755 (75,5%), т. е. расчетные параметры модели объясняют зависимость между рассматриваемыми параметрами на 75,5 %. Чем выше значение коэффициента детерминации, тем выбранная модель считается более применимой для конкретной задачи. Считается, что она корректно описывает реальную ситуацию при значении R-квадрата выше 0,8. Если R-квадрата<0,5, то такой анализа регрессии в Excel нельзя считать резонным.

Анализ коэффициентов

Число 64,1428 показывает, каким будет значение Y, если все переменные xi в рассматриваемой нами модели обнулятся. Иными словами можно утверждать, что на значение анализируемого параметра оказывают влияние и другие факторы, не описанные в конкретной модели.

Следующий коэффициент -0,16285, расположенный в ячейке B18, показывает весомость влияния переменной Х на Y. Это значит, что среднемесячная зарплата сотрудников в пределах рассматриваемой модели влияет на число уволившихся с весом -0,16285, т. е. степень ее влияния совсем небольшая. Знак «-» указывает на то, что коэффициент имеет отрицательное значение. Это очевидно, так как всем известно, что чем больше зарплата на предприятии, тем меньше людей выражают желание расторгнуть трудовой договор или увольняется.

Множественная регрессия

Под таким термином понимается уравнение связи с несколькими независимыми переменными вида:

y=f(x 1 +x 2 +…x m) + ε, где y — это результативный признак (зависимая переменная), а x 1 , x 2 , …x m — это признаки-факторы (независимые переменные).

Оценка параметров

Для множественной регрессии (МР) ее осуществляют, используя метод наименьших квадратов (МНК). Для линейных уравнений вида Y = a + b 1 x 1 +…+b m x m + ε строим систему нормальных уравнений (см. ниже)

Чтобы понять принцип метода, рассмотрим двухфакторный случай. Тогда имеем ситуацию, описываемую формулой

Отсюда получаем:

где σ — это дисперсия соответствующего признака, отраженного в индексе.

МНК применим к уравнению МР в стандартизируемом масштабе. В таком случае получаем уравнение:

в котором t y , t x 1, … t xm — стандартизируемые переменные, для которых средние значения равны 0; β i — стандартизированные коэффициенты регрессии, а среднеквадратическое отклонение — 1.

Обратите внимание, что все β i в данном случае заданы, как нормируемые и централизируемые, поэтому их сравнение между собой считается корректным и допустимым. Кроме того, принято осуществлять отсев факторов, отбрасывая те из них, у которых наименьшие значения βi.

Задача с использованием уравнения линейной регрессии

Предположим, имеется таблица динамики цены конкретного товара N в течение последних 8 месяцев. Необходимо принять решение о целесообразности приобретения его партии по цене 1850 руб./т.

номер месяца

название месяца

цена товара N

1750 рублей за тонну

1755 рублей за тонну

1767 рублей за тонну

1760 рублей за тонну

1770 рублей за тонну

1790 рублей за тонну

1810 рублей за тонну

1840 рублей за тонну

Для решения этой задачи в табличном процессоре «Эксель» требуется задействовать уже известный по представленному выше примеру инструмент «Анализ данных». Далее выбирают раздел «Регрессия» и задают параметры. Нужно помнить, что в поле «Входной интервал Y» должен вводиться диапазон значений для зависимой переменной (в данном случае цены на товар в конкретные месяцы года), а в «Входной интервал X» — для независимой (номер месяца). Подтверждаем действия нажатием «Ok». На новом листе (если так было указано) получаем данные для регрессии.

Строим по ним линейное уравнение вида y=ax+b, где в качестве параметров a и b выступают коэффициенты строки с наименованием номера месяца и коэффициенты и строки «Y-пересечение» из листа с результатами регрессионного анализа. Таким образом, линейное уравнение регрессии (УР) для задачи 3 записывается в виде:

Цена на товар N = 11,714* номер месяца + 1727,54.

или в алгебраических обозначениях

y = 11,714 x + 1727,54

Анализ результатов

Чтобы решить, адекватно ли полученное уравнения линейной регрессии, используются коэффициенты множественной корреляции (КМК) и детерминации, а также критерий Фишера и критерий Стьюдента. В таблице «Эксель» с результатами регрессии они выступают под названиями множественный R, R-квадрат, F-статистика и t-статистика соответственно.

КМК R дает возможность оценить тесноту вероятностной связи между независимой и зависимой переменными. Ее высокое значение свидетельствует о достаточно сильной связи между переменными «Номер месяца» и «Цена товара N в рублях за 1 тонну». Однако, характер этой связи остается неизвестным.

Квадрат коэффициента детерминации R 2 (RI) представляет собой числовую характеристику доли общего разброса и показывает, разброс какой части экспериментальных данных, т.е. значений зависимой переменной соответствует уравнению линейной регрессии. В рассматриваемой задаче эта величина равна 84,8%, т. е. статистические данные с высокой степенью точности описываются полученным УР.

F-статистика, называемая также критерием Фишера, используется для оценки значимости линейной зависимости, опровергая или подтверждая гипотезу о ее существовании.

(критерий Стьюдента) помогает оценивать значимость коэффициента при неизвестной либо свободного члена линейной зависимости. Если значение t-критерия > t кр, то гипотеза о незначимости свободного члена линейного уравнения отвергается.

В рассматриваемой задаче для свободного члена посредством инструментов «Эксель» было получено, что t=169,20903, а p=2,89Е-12, т. е. имеем нулевую вероятность того, что будет отвергнута верная гипотеза о незначимости свободного члена. Для коэффициента при неизвестной t=5,79405, а p=0,001158. Иными словами вероятность того, что будет отвергнута верная гипотеза о незначимости коэффициента при неизвестной, равна 0,12%.

Таким образом, можно утверждать, что полученное уравнение линейной регрессии адекватно.

Задача о целесообразности покупки пакета акций

Множественная регрессия в Excel выполняется с использованием все того же инструмента «Анализ данных». Рассмотрим конкретную прикладную задачу.

Руководство компания «NNN» должно принять решение о целесообразности покупки 20 % пакета акций АО «MMM». Стоимость пакета (СП) составляет 70 млн американских долларов. Специалистами «NNN» собраны данные об аналогичных сделках. Было принято решение оценивать стоимость пакета акций по таким параметрам, выраженным в миллионах американских долларов, как:

  • кредиторская задолженность (VK);
  • объем годового оборота (VO);
  • дебиторская задолженность (VD);
  • стоимость основных фондов (СОФ).

Кроме того, используется параметр задолженность предприятия по зарплате (V3 П) в тысячах американских долларов.

Решение средствами табличного процессора Excel

Прежде всего, необходимо составить таблицу исходных данных. Она имеет следующий вид:

  • вызывают окно «Анализ данных»;
  • выбирают раздел «Регрессия»;
  • в окошко «Входной интервал Y» вводят диапазон значений зависимых переменных из столбца G;
  • щелкают по иконке с красной стрелкой справа от окна «Входной интервал X» и выделяют на листе диапазон всех значений из столбцов B,C, D, F.

Отмечают пункт «Новый рабочий лист» и нажимают «Ok».

Получают анализ регрессии для данной задачи.

Изучение результатов и выводы

«Собираем» из округленных данных, представленных выше на листе табличного процессора Excel, уравнение регрессии:

СП = 0,103*СОФ + 0,541*VO - 0,031*VK +0,405*VD +0,691*VZP - 265,844.

В более привычном математическом виде его можно записать, как:

y = 0,103*x1 + 0,541*x2 - 0,031*x3 +0,405*x4 +0,691*x5 - 265,844

Данные для АО «MMM» представлены в таблице:

Подставив их в уравнение регрессии, получают цифру в 64,72 млн американских долларов. Это значит, что акции АО «MMM» не стоит приобретать, так как их стоимость в 70 млн американских долларов достаточно завышена.

Как видим, использование табличного процессора «Эксель» и уравнения регрессии позволило принять обоснованное решение относительно целесообразности вполне конкретной сделки.

Теперь вы знаете, что такое регрессия. Примеры в Excel, рассмотренные выше, помогут вам в решение практических задач из области эконометрики.