Какую роль в клетке выполняют хромосомы: строение и функции. Соматические клетки: что это такое, для чего они нужны и как они делятся

Видеоурок 1: Деление клетки. Митоз

Видеоурок 2: Мейоз. Фазы мейоза

Лекция: Клетка - генетическая единица живого. Хромосомы, их строение (форма и размеры) и функции

Клетка - генетическая единица живого

Базовой единицей жизни признана отдельная клетка. Именно на клеточном уровне происходят процессы, отличающие живую материю от неживой. В каждой из клеток хранится и интенсивно используется наследственная информация о химической структуре белков, которые должны синтезироваться в ней и поэтому она называется генетической единицей живого. Даже безъядерные эритроциты на начальных этапах своего существования обладают митохондриями и ядром. Только в зрелом состоянии они не имеют структур для синтеза белка.

На сегодняшний день науке неизвестны клетки, в которых бы не содержалась ДНК или РНК в качестве носителя геномной информации. При отсутствии генетического материала клетка не способна к синтезу белков, а следовательно – жизни.

ДНК имеется не только в ядрах, ее молекулы содержатся в хлоропластах и митохондриях, эти органоиды могут размножаться внутри клетки.

ДНК в клетке находится в виде хромосом – сложных белково-нуклеиновых комплексов. Хромосомы эукариот локализованы в ядре. Каждая из них представляет собой сложную структуру из:

    Единственной длинной молекулы ДНК, 2 метра которой упакованы в компактную структуру размером (у человека) до 8 мкм;

    Специальных белков-гистонов, чья роль сводится к упаковке хроматина (вещества хромосомы) в знакомую палочковидную форму;

Хромосомы, их строение (форма и размеры) и функции


Такая плотная упаковка генетического материала производится клеткой перед делением. Именно в этот момент можно рассмотреть в микроскоп плотно упакованные сформированные хромосомы. Когда ДНК свернута в компактные хромосомы, называемые гетерохроматином – синтез матричной РНК невозможен. В период набора клеткой массы и ее интерфазного развития хромосомы находятся в менее упакованном состоянии, которое названо интерхроматином и в нем синтезируется мРНК, происходит репликация ДНК.

Основными элементами структуры хромосом являются:

    Центромера. Это часть хромосомы с особой последовательностью нуклеотидов. Она соединяет между собой две хроматиды, участвует в конъюгации. Именно к ней прикрепляются белковые нити трубочек веретена деления клетки.

    Теломеры . Это концевые участки хромосом, которые не способны к соединению с другими хромосомами, они играют защитную роль. Состоят из повторяющихся участков специализированной ДНК, образующей комплексы с белками.

    Точки инициации репликации ДНК.

Хромосомы прокариот очень сильно отличаются от эукариотических, представляя собой расположенные в цитоплазме, ДНК-содержащие структуры. Геометрически они представляют собой кольцевую молекулу.

Хромосомный набор клетки имеет свое название – кариотип. Каждый из видов живых организмов имеет свои, характерные только для него состав, количество и форму хромосом.

Соматические клетки содержат диплоидный (двойной) хромосомный набор, от каждого из родителей получено по половине.

Хромосомы, отвечающие за кодирование одних и тех же функционально белков – называются гомологичными. Плоидность клеток может быть различной – как правило, у животных гаметы гаплоидны. У растений полиплоидия в настоящее время довольно частое явление, использующееся при создании новых сортов в результате гибридизации. Нарушение количества плоидности у теплокровных и человека вызывает серьезные врожденные заболевания, такие как синдром Дауна (наличие трех копий 21-й хромосомы). Чаще всего хромосомные нарушения приводят к нежизнеспособности организма.

У человека полный хромосомный набор состоит из 23 пар. Наибольшее известное число хромосом – 1600, найдено у простейших планктонных организмов – радиолярий. Самый маленький хромосомный набор у австралийских черных муравьев-бульдогов – всего 1.

Жизненный цикл клетки. Фазы митоза и мейоза


Интерфаза , иначе говоря, отрезок времени между двумя делениями, определяется наукой как жизненный цикл клетки.

В течение интерфазы в клетке совершаются жизненные химические процессы, она растет, развивается, накапливает запасные вещества. Подготовка к размножению предусматривает удвоение содержимого – органоидов, вакуолей с питательным содержимым, объема цитоплазмы. Именно благодаря делению, как способу быстрого увеличения количества клеток возможны продолжительная жизнь, размножение, увеличение размеров организма, его выживание при ранениях и регенерация тканей. В клеточном цикле выделяются следующие этапы:

    Интерфаза. Время между делениями. Сначала клетка растет, затем увеличивается число органоидов, объем запасного вещества, синтезируются белки. В последней части интерфазы хромосомы готовы к последующему делению – они состоят из пары сестринских хроматид.

    Митоз. Так называется один из способов деления ядра, характерный для телесных (соматических) клеток, в его ходе из одной получаются 2 клетки, с идентичным набором генетического материала.

Для гаметогенеза характерен мейоз. Прокариотические клетки сохранили древний способ размножения - прямое деление.

Митоз состоит из 5 основных фаз:

    Профаза. Ее началом считается момент, когда хромосомы становятся столь плотно упакованными, что видны в микроскоп. Также, в этом время разрушаются ядрышки, образуется веретено деления. Активизируются микротрубочки, продолжительность их существования уменьшается до 15 секунд, но скорость образования вырастает тоже значительно. Центриоли расходятся к противоположным сторонам клетки, формируя огромное количество постоянно синтезирующихся и распадающихся белковых микротрубочек, которые протягиваются от них к центромерам хромосом. Так формируется веретено деления. Такие мембранные структуры как ЭПС и аппарат Гольджи распадаются на отдельные пузырьки и трубочки, беспорядочно расположенные в цитоплазме. Рибосомы отделяются от мембран ЭПС.

    Метафаза . Образуется метафазная пластинка, состоящая из хромосом, уравновешенных в середине клетки усилиями противоположных центриольных микротрубочек, тянущих их каждая в свою сторону. При этом продолжается синтез и распад микротрубочек, своеобразная их «переборка». Эта фаза самая длительная.

  • Анафаза . Усилия микротрубочек отрывают соединения хромосом в области центромеры, и с силой растягивают их к полюсам клетки. При этом хромосомы из-за сопротивления цитоплазмы иногда принимают V-образную форму. В области метафазной пластинки появляется кольцо из белковых волокон.
  • Телофаза. Ее началом считается момент, когда хромосомы достигают полюсов деления. Начинается процесс восстановления внутренних мембранных структур клетки – ЭПС, аппарата Гольджи, ядра. Хромосомы распаковываются. Собираются ядрышки, начинается синтез рибосом. Веретено деления распадается.
  • Цитокинез . Последняя фаза, в которой появившееся в центральной области клетки белковое кольцо начинает сжиматься, расталкивая цитоплазму к полюсам. Происходит разделение клетки на две и образование на месте белкового кольца клеточной мембраны.

Регуляторами процесса митоза являются специфические белковые комплексы. Результатом митотического деления становится пара клеток, обладающих идентичной генетической информацией. В гетеротрофных клетках митоз протекает быстрее, чем в растительных. У гетеротрофов этот процесс может занимать от 30 минут, у растений – 2-3 часа.

Для генерации организмом клеток, имеющих половинное от нормального количество хромосом используется другой механизм деления – мейоз .

Он связан с необходимостью производства половых клеток, у многоклеточных позволяет избежать постоянного увеличения в два раза количества хромосом в последующем поколении и дает возможность получения новых комбинаций аллельных генов. Он отличается количеством фаз, являясь более длительным. Происходящее при этом уменьшение количества хромосом приводит к образованию 4 гаплоидных клеток. Мейоз представляет собой два деления, следующих друг за другом без перерыва.

Определены следующие фазы мейоза:

    Профаза I . Гомологичные хромосомы приближаются друг к другу и продольно объединяются. Такое объединение названо конъюгацией. Затем происходит кроссинговер – двойные хромосомы перекрещиваются своими плечами и обмениваются участками.

    Метафаза I. Хромосомы разъединяются и занимают места на экваторе клеточного веретена деления, принимая V-образную форму из-за натяжения микротрубочек.

    Анафаза I. Гомологичные хромосомы растягиваются микротрубочками к полюсам клетки. Но в отличие от митотического деления, они расходятся целыми, а не отдельными хроматидами.

Результатом первого деления мейоза становится образование двух клеток, имеющих половинное количество целых хромосом. Между делениями мейоза интерфаза практически отсутствует, удвоения хромосом не случается, они и так двуххроматидные.

Сразу следующее за первым повторное мейотическое деление полностью аналогично митозу – в нем хромосомы разделяются на отдельные хроматиды, распределяемые поровну между новыми клетками.

    оогонии проходят стадию митотического размножения на эмбриональном этапе развития, так что женский организм уже рождается с неизменным их количеством;

    сперматогонии способны к размножению в любой момент репродуктивного периода мужского организма. Генерируется их намного большее количество, чем женских гамет.


Гаметогенез животных организмов происходит в половых железах – гонадах.

Процесс превращения сперматогониев в сперматозоиды происходит в несколько этапов:

    Митотическое деление превращает сперматогонии в сперматоциты 1-го порядка.

    В результате однократного мейоза они превращаются в сперматоциты 2-го порядка.

    Второе мейотическое деление позволяет получить 4 гаплоидные сперматиды.

    Наступает период формирования. В клетке происходит уплотнение ядра, уменьшение количества цитоплазмы, формирование жгутика. Также, запасаются белки и увеличивается количество митохондрий.

Формирование яйцеклеток во взрослом женском организме происходит следующим образом:

    Из овоцита 1-го порядка, которых в организме находится определенное количество, в результате мейоза с уменьшением количества хромосом вдвое образуются ооциты 2-го порядка.

    В результате второго мейотического деления образуются: зрелая яйцеклетка и три мелких редукционных тельца.

Это неравновесное распределение питательных веществ между 4-мя клетками призвано обеспечить большой ресурс питательных веществ для нового живого организма.

Яйцеклетки у папоротников и мхов образуются в архегониях. У более высокоорганизованных растений – в специальных семяпочках, расположенных в завязи.




Хромосомы - структуры клетки, хранящие и передающие наследственную информацию. Хромосома состоит из ДНК и белка. Комплекс белков, связанных с ДНК, образует хроматин. Белки играют важную роль в упаковке молекул ДНК в ядре.

ДНК в хромосомах упакована таким образом, что умещается в ядре, диаметр которого обычно не превышает 5 мкм (5-10 -4 см). Упаковка ДНК приобретает вид петельной структуры, похожей на хромосомы типаламповых щеток амфибий или политенных хромосом насекомых. Петли поддерживаются с помощью белков, которые узнают определенные последовательности нуклеотидов и сближают их. Строение хромосомы лучше всего видно в метафазе митоза.

Хромосома представляет собой палочковидную структуру и состоит из двух сестринских хроматид, которые удерживаются центромерой в области первичной перетяжки. Каждая хроматида построена из хроматиновых петель. Хроматин не реплицируется. Реплицируется только ДНК.

Рис. 14. Строение и репликация хромосомы

С началом репликации ДНК синтез РНК прекращается. Хромосомы могут находиться в двух состояниях: конденсированном (неактивном) и деконденсированном (активном).

Диплоидный набор хромосом организма называют кариотипом. Современные методы исследования позволяют определить каждую хромосому в кариотипе. Для этого учитывают распределение видимых под микроскопом светлых и темных полос (чередование AT и ГЦ-пар) в хромосомах, обработанных специальными красителями. Поперечной исчерченностью обладают хромосомы представителей разных видов. У родственных видов, например у человека и шимпанзе, очень сходный характер чередования полос в хромосомах.

Каждый вид организмов обладает постоянным числом, формой и составом хромосом. В кариотипе человека 46 хромосом - 44 аутосомы и 2 половые хромосомы. Мужчины гетерогаметны (ХУ), а женщины гомогаметны (XX). У-хромосома отличается от Х-хромосомы отсутствием некоторых аллелей (например, аллеля свертываемости крови). Хромосомы одной пары называют гомологичными. Гомологичные хромосомы в одинаковых локусах несут аллельные гены.

1.14. Размножение в органическом мире

Размножение - это воспроизведение генетически сходных особей данного вида, обеспечивающее непрерывность и преемственность жизни.

Бесполое размножение осуществляется следующими путями:

  • простым делением на две или сразу на много клеток (бактерии, простейшие);
  • вегетативно (растения, кишечнополостные);
  • делением многоклеточного тела пополам с последующей регенерацией (морские звезды, гидры);
  • почкованием (бактерии, кишечнополостные);
  • образованием спор.

Бесполое размножение обычно обеспечивает увеличение численности генетически однородного потомства. Но когда ядра спор образуются в результате мейоза, потомство от бесполого размножения будет генетически разным.

Половое размножение - процесс, в котором объединяется генетическая информация от двух особей.

Особи разного пола образуют гаметы. Женские особи производят яйцеклетки, мужские - сперматозоиды, обоеполые особи (гермафродиты) производят и яйцеклетки, и сперматозоиды. А у некоторых водорослей сливаются две одинаковых половых клетки.

При слиянии гаплоидных гамет происходит оплодотворение и образование диплоидной зиготы.

Зигота развивается в новую особь.

Все вышеперечисленное справедливо только для эукариот. У прокариот тоже есть половой процесс, но происходит он по-другому.

Таким образом, при половом размножении происходит смешивание геномов двух разных особей одного вида. Потомство несет новые генетические комбинации, что отличает их от родителей и друг от друга.

Один из видов полового размножения - партеногенез, или развитие особей из неоплодотворенной яйцеклетки (тли, трутни пчел и др.).

Строение половых клеток

Яйцеклетки - круглые, сравнительно крупные, неподвижные клетки. Размеры - от 100 мкм до нескольких сантиметров в диаметре. Содержат все органоиды, характерные для эукариотической клетки, а также включения запасных питательных веществ в виде желтка. Яйцеклетка покрыта яйцевой оболочкой, состоящей в основном из гликопротеидов.

Рис. 15. Строение яйцеклетки птицы : 1 - халаза; 2 - скорлупа; 3 - воздушная камера; 4 - наружная подскорлуновая оболочка; 5 - жидкий белок; 6 - плотный белок; 7 - зародышевый диск; 8 - светлый желток; 9 - темный желток.

У мхов и папоротников яйцеклетки развиваются в архегониях, у цветковых растений - в семяпочках, локализованных в завязи цветка.

Яйцеклетки подразделяют следующим образом:

  • изолецитальные - желток распределен равномерно и его немного (у червей, моллюсков);
  • алецитальные - почти лишены желтка (млекопитающие);
  • телолецитальные - содержат много желтка (рыбы, птицы);
  • полилецитальные - содержат значительное количество желтка.

Овогенез - образование яйцеклеток у самок.

В зоне размножения находятся овогонии - первичные половые клетки, размножающиеся митозом.

Из овогониев после первого мейотического деления образуются овоциты первого порядка.

После второго мейотического деления образуются овоциты второго порядка, из которых формируется одна яйцеклетка и три направительных тельца, которые затем гибнут.

Сперматозоиды - мелкие, подвижные клетки. В них выделяют головку, шейку и хвост.

В передней части головки находится акросомальный аппарат - аналог аппарата Гольджи. В нем содержится фермент (гиалуронидаза), растворяющий оболочку яйцеклетки при оплодотворении. В шейке расположены центриоли и митохондрии. Жгутики сформированы из микротрубочек. При оплодотворении в яйцеклетку попадают только ядро и центриоли сперматозоида. Митохондрии и другие органоиды остаются снаружи. Поэтому цитоплазматическая наследственность у людей передается только по женской линии.

Половые клетки животных и растений, размножающихся половым путем, образуются в результате процесса, называемого гаметогенезом.

Важнейшие из органелл клетки представляют собой микроскопические структуры , находящиеся в ядре. Они были открыты одновременно несколькими учёными, в том числе российским биологом Иваном Чистяковым.

Название нового клеточного компонента было придумано не сразу. Его дал немецкий учёный В. Вальдейер, который,окрашивая гистологические препараты, обнаружил некие тельца, хорошо окрашивающиеся фуксином. Тогда ещё не было точно известно какую роль в выполняют хромосомы.

Вконтакте

Значение

Структура

Рассмотрим, какое строение и функции имеют эти уникальные клеточные образования. В состоянии интерфазы их практически не видно. На этой стадии удваивается молекула и образуется две сестринские хроматиды .

Строение хромосомы можно рассмотреть в момент ее подготовки к митозу или мейозу (делению). Подобные хромосомы называются метафазными , потому что образуются на стадии метафазы, подготовки к делению. До этого момента тельца представляют собой невзрачные тонкие нити темного оттенка , которые называют хроматином .

При переходе в метафазную стадию строение хромосомы меняется: ее образуют две хроматиды, соединенные центромерой — так именуется первичная перетяжка . При делении клетки удваивается также количество ДНК . Схематический рисунок напоминает букву Х. Они содержат в составе, кроме ДНК, белки (гистоновые, негистоновые) и рибонуклеиновую кислоту — РНК.

Первичная перетяжка разделяет тело клетки (нуклеопротеидной структуры) на два плеча, немного сгибая их. На основе места расположения перетяжки и длины плеч была разработана следующая классификация типов:

  • метацентрические, они же равноплечие, центромера делит клетку ровно пополам;
  • субметацентрические. Плечи не одинаковы , центромера смещена ближе к одному концу;
  • акроцентрические. Центромера сильно смещена и находится почти скраю;
  • телоцентрическая. Одно плечо полностью отсутствует, у людей не встречается .

У некоторых видов имеется вторичная перетяжка , которая может располагаться в разных точках. Она отделяет часть, которая именуется спутником. От первичной отличается тем, что не имеет видимого угла между сегментами . Ее функция заключается в синтезировании РНК на матрице ДНК. У людей встречается в 13, 14, 21 и 15, 21 и 22 парах хромосом . Появление в другой паре несет угрозу тяжёлого заболевания.

Теперь остановимся на том, какую хромосомы выполняют функцию. Благодаря воспроизводству разных типов и-РНК и белков они осуществляют четкий контроль за всеми процессами жизни клетки и организма в целом. Хромосомы в ядре эукариот выполняют функции синтезирования белков из аминокислот, углеводов из неорганических соединений, расщепляют органические вещества до неорганических, хранят и передают наследственную информацию .

Диплоидный и гаплоидный наборы

Специфика строения хромосом может отличаться, смотря где они образуются. Как называется набор хромосом в соматических клеточных структурах? Он получил наименование диплоидного или двойного.Соматические клетки размножаются простым делением на две дочерние . В обычных клеточных образованиях каждая клеточка имеет свою гомологичную пару. Происходит это потому, что каждая из дочерних клеток должна иметь тот же объем наследственной информации , что и материнская.

Как соотносится число хромосом в соматических и половых клетках. Здесь числовое соотношение составляет два к одному. В процессе образования половых клеток происходит особый тип деле­ния , в итоге набор в зрелых яйцеклетках и сперматозо­идах становится одинарным. Какую функцию выполняют хромосомы можно объяснить, изучая особенности их устройства.

Мужские и женские половые клетки имеют половинчатый набор, называемый гаплоидным , то есть всего их насчитывается 23. Сперматозоид сливается с яйцеклеткой, получается новый организм с полным набором. Генетическая информация мужчины и женщины таким образом объединяется. Если бы половые клетки несли диплоидный набор (46), то при соединении получился бы нежизнеспособный организм .

Разнообразие генома

Число носителей генетической информации у разных классов и видов живых существ отличается.

Они обладают способностью окрашиваться специально подобранными красителями, в их структуре чередуются светлые и тёмные поперечные участки — нуклеотиды . Их последовательность и расположение носят специфический характер. Благодаря этому учёные научились различать клетки и, в случае необходимости, чётко указывать «поломанную».

В настоящее время генетики расшифровали человека и составили генетические карты, что позволяет методом анализа предположить некоторые серьёзные наследственные заболевания ещё до того, как они проявятся.

Появилась возможность подтверждать отцовство, определять этническую принадлежность , выявлять, не является ли человек носителем какой-либо патологии, до времени не проявляющейся либо дремлющей внутри организма, определять особенности негативной реакции на лекарства и многое другое.

Немного о патологии

В процессе передачи генного набора могут происходить сбои и мутации , приводящие к серьёзным последствиям, среди них встречаются

  • делеции — потеря одного участка плеча, вызывающая недоразвитие органов и клеток головного мозга;
  • инверсии – процессы, при которых фрагмент переворачивается на 180 градусов, результатом становится неправильная последовательность расположения генов ;
  • дупликации – раздвоение участка плеча.

Мутации могут возникать и между рядом находящимися тельцами — этот феномен был назван транслокацией. Известные синдромы Дауна, Патау, Эдвардса также являются следствием нарушения работы генного аппарата .

Хромосомные болезни. Примеры и причины

Классификация клеток и хромосом

Заключение

Значение хромосом велико. Без этих мельчайших ультраструктур невозможна передача генной информации , следовательно, организмы не смогут размножаться. Современные технологии могут читать, заложенный в них код и успешно предотвращать возможные болезни , которые раннее считались неизлечимыми.

Внешне люди сильно отличаются друг от друга. Большие и маленькие, высокие и низкие, светлокожие и темнокожие... Присмотритесь к себе и своим друзьям и вы убедитесь, что каждый человек индивидуален. И все же в главном мы похожи: наши тела построены и функционируют по общим законам.

Наше тело, как и тело всех многоклеточных организмов, состоит из клеток. Клеток в организме человека многие миллиарды - это его главный структурный и функциональный элемент.

Кости, мышцы, кожа - все они построены из клеток. Клетки активно реагируют на раздражение, участвуют в обмене веществ, растут, размножаются, обладают способностью к регенерации и передаче наследственной информации.

Клетки нашего организма очень разнообразны. Они могут быть плоскими, круглыми, веретенообразными, иметь отростки. Форма зависит от положения клеток в организме и выполняемых функций. Размеры клеток тоже различны: от нескольких микрометров (малый лейкоцит) до 200 микрометров (яйцеклетка). При этом, несмотря на такое многообразие, большинство клеток имеют единый план строения: состоят из ядра и цитоплазмы, которые снаружи покрыты клеточной мембраной {оболочкой).

Ядро есть в каждой клетке, кроме эритроцитов. Оно несет наследственную информацию и регулирует образование белков. Наследственная информация обо всех признаках организма хранится в молекулах дезоксирибонуклеиновой кислоты (ДНК).

ДНК является основным компонентом хромосом. У человека в каждой неполовой (соматической) клетке их 46, а в половой клетке 23 хромосомы. Хромосомы хорошо видны только в период деления клетки. При делении клетки наследственная информация в равных количествах передается дочерним клеткам.

Снаружи ядро окружает ядерная оболочка, а внутри него находится одно или несколько ядрышек, в которых образуются рибосомы - органоиды, обеспечивающие сборку белков клетки.

Ядро погружено в цитоплазму, состоящую из гиалоплазмы (от греч. «гиалинос» - прозрачный) и находящихся в ней органоидов и включений. Гиалоплазма образует внутреннюю среду клетки, она объединяет все части клетки между собой, обеспечивает их взаимодействие.

Органоиды клетки - это постоянные клеточные структуры, выполняющие определенные функции. Познакомимся с некоторыми из них.

Эндоплазматическая сеть напоминает сложный лабиринт, образованный множеством мельчайших канальцев, пузырьков, мешочков (цистерн). В некоторых участках на ее мембранах расположены рибосомы, такую сеть называют гранулярной (зернистой). Эндоплазматическая сеть участвует в транспорте веществ в клетке. В гранулярной эндоплазматической сети образуются белки, а в гладкой (без рибосом)- животный крахмал (гликоген) и жиры.

Комплекс Гольджи представляет собой систему плоских мешочков (цистерн) и многочисленных пузырьков. Он принимает участие в накоплении и транспортировке веществ, которые образовались в других органоидах. Здесь также синтезируются сложные углеводы.

Митохондрии - органоиды, основной функцией которых является окисление органических соединений, сопровождающееся высвобождением энергии. Эта энергия идет на синтез молекул аденозинтрифосфорной кислоты (АТФ), которая служит как бы универсальным клеточным аккумулятором. Энергию, заключенную в ЛТФ, клетки затем используют на различные процессы своей жизнедеятельности: выработку тепла, передачу нервных импульсов, мышечные сокращения и многое другое.

Лизосомы, небольшие шарообразные структуры, содержат вещества, которые разрушают ненужные, утратившие свое значение или поврежденные части клетки, а также участвуют во внутриклеточном пищеварении.

Снаружи клетка покрыта тонкой (около 0,002 мкм) клеточной мембраной, которая отграничивает содержимое клетки от окружающей среды. Основная функция мембраны - защитная, но она воспринимает также и воздействия внешней для клетки среды. Мембрана не сплошная, она полупроницаема, через нее свободно проходят некоторые вещества, г. е. она выполняет и транспортную функцию. Через мембрану осуществляется и связь с соседними клетками.

Вы видите, что функции органоидов сложны и многообразны. Они играют для клетки ту же роль, что и органы для целостного организма.

Продолжительность жизни клеток нашего организма различна. Так, некоторые клетки кожи живут 7 дней, эритроциты - до 4 месяцев, а вот костные клетки - от 10 до 30 лет.

Проверьте свои знания

  1. Назовите основные органоиды клетки. Какова их роль?
  2. Какой формы бывают клетки? От чего это зависит?
  3. Какую роль играют в клетке молекулы ДНК?
  4. Сколько хромосом в половых и в соматических клетках человека?
  5. Каковы функции ядра?
  6. Расскажите о строении и роли эндоплазматической сети.
  7. Какие функции выполняет комплекс Гольджи?
  8. Почему митохондрии называют «аккумулятором» клетки?
  9. Какие органоиды принимают участие в разрушении и растворении частей клетки, утративших свое значение?

Подумайте

Почему клетку считают структурным и функциональным элемен том тела?

Клетка - структурная и функциональная единица тела человека, органоиды - постоянные клеточные структуры, выполняющие определенные функции.

Органоиды - это специализированные участки цитоплазмы клетки, имеющие определенную структуру и выполняющие определенные функции в клетке. Их подразделяют на органоиды общего назначения, которые имеются в большинстве клеток (митохондрии, комплекс Гольджи, эндоплазматическая сеть, рибосомы, клеточный центр, лизосомы, пластиды и вакуоли), и органоиды специального назначения, которые имеются только в специализированных клетках (миофибриллы - в мышечных клетках, жгутики, реснички, пульсирующие вакуоли - в клетках простейших). Большинство органоидов имеет мембранное строение. Мембраны отсутствую в структуре рибосом и клеточного центра. Клетка покрыта мембраной, состоящей из нескольких слоёв молекул,

обеспечивающей избирательную проницаемость веществ. В цитоплазме

расположены мельчайшие структуры – органоиды. К органоидам клетки

относятся: эндоплазматическая сеть, рибосомы, митохондрии, лизосомы,

комплекс Гольджи, клеточный центр.

Цитоплазма содержит ряд мельчайших структур клетки – органоидов,

которые выполняют различные функции. Органоиды обеспечивают

жизнедеятельность клетки.

Эндоплазматическая сеть.

Название этого органоида отражает место расположения его в

центральной части цитоплазмы (греч. «эндон» - внутри). ЭПС представляет

собой очень разветвлённую систему канальцев, трубочек, пузырьков, цистерн

разной величины и формы, отграниченных мембранами от цитоплазмы клетки.

ЭПС бывает двух видов: гранулярная, состоящая из канальцев и цистерн,

поверхность которых усеяна зёрнышками (гранулами) и агранулярная, т.е.

гладкая (без гран). Граны в эндоплазматической сети ни что иное, как

рибосомы. Интересно, что в клетках зародышей животных наблюдается в

основном гранулярная ЭПС, а у взрослых форм – агранулярная. Зная, что

рибосомы в цитоплазме служат местом синтеза белка, можно предположить, что

гранулярная ЭПС преобладает в клетках, активно синтезирующих белок.

Считают, что агранулярная сеть в большей степени предоставлена в тех

клетках, где идёт активный синтез липидов (жиров и жироподобных веществ).

Оба вида эндоплазматической сети не только участвуют в синтезе

органических веществ, но и накапливают и транспортируют их к местам

назначения, регулируют обмен веществ между клеткой и окружающей её средой.

Рибосомы.

Рибосомы – не мембранные клеточные органоиды, состоящие из

рибонуклеиновой кислоты и белка. Их внутреннее строение во многом ещё

остаётся загадкой. В электронном микроскопе они имеют вид округлых или

грибовидных гранул.

Каждая рибосомы разделена желобком на большую и маленькую части

(субъединицы). Часто несколько рибосом объединяются нитью специальной

рибонуклеиновой кислоты (РНК), называемой информационной (и-РНК). Рибосомы

осуществляют уникальную функцию синтеза белковых молекул из аминокислот.

Комплекс Гольджи.

Продукты биосинтеза поступают в просветы полостей и канальцев ЭПС,

где они концентрируются в специальный аппарат – комплекс Гольджи,

расположенный вблизи ядра. Комплекс Гольджи участвует в транспорте

продуктов биосинтеза к поверхности клетки и в выведении их из клетки, в

формировании лизосом и т.д.

Комплекс Гольджи был открыт итальянским цитологом Камилио Гольджи

и в 1898 году был назван «комплексом (аппаратом) Гольджи».

Белки, выработанные в рибосомах, поступают в комплекс Гольджи, а когда они

требуются другому органоиду, то часть комплекса Гольджи отделяется, и белок

доставляется в требуемое место.

Лизосомы.

Лизосомы (от греч. «лизео» – растворяю и «сома» - тело) - это

органоиды клетки овальной формы, окружённые однослойной мембраной. В них

находится набор ферментов, которые разрушают белки, углеводы, липиды. В

случае повреждения лизосомной мембраны ферменты начинают расщеплять и

разрушать внутреннее содержимое клетки, и она погибает.

Клеточный центр.

Клеточный центр можно наблюдать в клетках, способных делиться. Он

состоит из двух палочковидных телец – центриолей. Находясь около ядра и

комплекса Гольджи, клеточный центр участвует в процессе деления клетки, в

образовании веретена деления.

Энергетические органоиды.

Митохондрии (греч. «митос» - нить, «хондрион» - гранула) называют

энергетическими станциями клетки. Такое название обуславливается тем, что

именно в митохондриях происходит извлечение энергии, заключённой в

питательных веществах. Форма митохондрий изменчива, но чаще всего они имеют

вид нитей или гранул. Размеры и число их также непостоянны и зависят от

функциональной активности клетки.

На электронных микрофотографиях видно, что митохондрии состоят из

двух мембран: наружной и внутренней. Внутренняя мембрана образует выросты,

называемые кристами, которые сплошь устланы ферментами. Наличие крист

увеличивает общую поверхность митохондрий, что важно для активной

деятельности ферментов.

В митохондриях обнаружены свои специфические ДНК и рибосомы. В связи

с этим они самостоятельно размножаются при делении клетки.

Хлоропласты – по форме напоминают диск или шар с двойной оболочкой –

наружной и внутренней. Внутри хлоропласта также имеются ДНК, рибосомы и

особые мембранные структуры – граны, связанные между собой и внутренней

мембраной хлоропласта. В мембранах гран и находится хлорофилл. Благодаря

хлорофиллу в хлоропластах происходит превращение энергии солнечного света в

химическую энергию АТФ (аденозинтрифосфат). Энергия АТФ используется в

хлоропластах для синтеза углеводов из углекислого газа и воды.

Клеточные включения - это непостоянные структуры клетки. К ним относятся капли и зерна белков, углеводов и жиров, а так же кристаллические включения (органические кристаллы, которые могут образовывать в клетках белки, вирусы, соли щавелевой кислоты и т.д. и неорганические кристаллы, образованные солями кальция). В отличие от органоидов эти включения не имеют мембран или элементов циоскелета и периодически синтезируются и расходуются. Капли жира используются как запасное вещество в связи с его высокой энергоемкостью. Зерна углеводов (полисахаридов; в виде крахмала у растений и в виде гликогена у животных и грибов - как источник энергии для образования АТФ; зерна белка - как источник строительного материала, соли кальция - для обеспечения процесса возбуждения, обмена веществ и тд)