Физиология микроорганизмов микробиология. Кафедра медицинской биологии, микробиологии, вирусологии и иммунологии физиология микроорганизмов. рост и размножение бактерий лектор ст. препод. а.р. По назначению питательные среды могут быть

Физиология микроорганизмов

Краткий исторический обзор возникновения и развития микробиологии.

Микробиология – относительно молодая наука, ее ис­тория насчитывает не более 300 лет. В истории микробио­логии можно выделить два периода, морфологический и физиологический. Первый связан с именем голландца Антония ван Левенгука (1632–1723), который в конце XVII в. создал первые микроскопы, увеличивающие предметы в 160-300 раз. Второй связан с именем великого француз­ского ученого Луи Пастера (1822–1895), которым были сделаны следующие открытия:

1857 – брожение, 1860 – самопроизвольное зарождение, 1865 – болезни пива и вина, 1868 – болезни шелковичных червей, 1881 – зараза и вакцина, 1885 – предохранение от бешенства.

Эти открытия послужили фундаментом дальнейшего развития микробиологической науки.

Развитие микробиологии связано и с именами выдаю­щихся русских ученых. И. И. Мечников (1845–1916) от­крыл защитные свойства организма (явление фагоцитоза), создал учение о невосприимчивости (иммунитете) организма к заразным заболеваниям. С. Н. Виноградский (1856–1953) – основоположник учения о роли микробов в плодородии почвы. Д. И. Ивановский (1864–1920) впервые обнаружил существование ультрамалых микробов-вирусов, положил начало науке по изучению фильтрующихся вирусов – вирусологии.

Изучение курса ставит задачей дать специалистам зна­ния, необходимые для практической деятельности, исходя из того, что современные методы сохранения пищевых продуктов основаны на изучении жиз­недеятельности микроорганизмов. Без знаний по микробиологии и санитарии невозможно осуществлять и совершенствовать микробиологический и санитарный контроль предприятий общественного питания, разрабатывать эффек­тивные меры по предотвращению развития и уничтоже­нию посторонней нежелательной микрофлоры, а также обеспечивать население доброкачественными продуктами питания.

1. Классификация микроорганизмов. Характеристика основных групп микроорганизмов: бактерии, плесневые грибы, дрожжи, ультрамикробы.

Микробы - это мельчайшие, преимущественно одноклеточные живые организмы, видимые только в микроскоп. Размер микроорганизмов измеряется в микрометрах - мкм (1/1000 мм) и нанометрах - нм (1/1000 мкм).

Микробы характеризуются огромным разнообразием видов, отличающихся строением, свойствами, способностью существовать в различных условиях среды. Они могут бытьодноклеточными, многоклеточными инеклеточными.

Микробы подразделяют на бактерии, вирусы и фаги, грибы, дрожжи.

БАКТЕРИИ.

Бактерии - преимущественно одноклеточные микроорганизмы размером от десятых долей микрометра, например микоплазмы, до нескольких микрометров, а у спирохет - до 500 мкм.

Различают три основные формы бактерий - шаровидные (кокки), палочковидные (бациллы и др.), извитые (вибрионы, спирохеты, спириллы) (рис. 1).

Рис. 1. Формы бактерий: 1 - микрококки; 2 - стрептококки; 3 - сардины; 4 - палочки без спор; 5 - палочки со спорами (бациллы); 6 - вибрионы; 7- спирохеты; 8 - спириллы (с жгутиками); 9 – стафилококки.

Шаровидные бактерии (кокки) имеют обычно форму шара, но могут быть немного овальной или бобовидной формы. Кокки могут располагаться поодиночке (микрококки); попарно (диплококки); в виде цепочек (стрептококки) или виноградных гроздьев (стафилококки), пакетом (сарцины). Стрептококки могут вызывать ангину и рожистое воспаление, стафилококки - различные воспалительные и гнойные процессы.

Палочковидные бактерии самые распространенные. Палочки могут быть одиночными, соединяться попарно (диплобактерии) или в цепочки (стрептобактерии). К палочковидным относятся кишечная палочка, возбудители сальмонеллеза, дизентерии, брюшного тифа, туберкулеза и др. Некоторые палочковидные бактерии обладают способностью при неблагоприятных условиях образовывать споры. Спорообразующие палочки называютбациллами. Бациллы, напоминающие по форме веретено, называютклостридиями.

Извитые бактерии могут быть в виде запятой - вибрионы, с несколькими завитками - спириллы, в виде тонкой извитой палочки - спирохеты. К вибрионам относится возбудитель холеры, а возбудитель сифилиса - спирохета.

Бактериальная клетка имеет клеточную стенку (оболочку), часто покрытую слизью. Нередко слизь образует капсулу. Содержимое клетки (цитоплазму) отделяет от оболочки клеточная мембрана. Цитоплазма представляет собой прозрачную белковую массу, находящуюся в коллоидном состоянии.

Микоплазмы - бактерии, лишенные клеточной стенки, нуждающиеся для своего развития в ростовых факторах, содержащихся в дрожжах.

Некоторые бактерии могут двигаться. Движение осуществляется с помощью жгутиков - тонких нитей разной длины, совершающих вращательные движения. Жгутики могут быть в виде одиночной длинной нити или в виде пучка, могут располагаться по всей поверхности бактерии. Жгутики есть у многих палочковидных бактерий и почти у всех изогнутых бактерий. Шаровидные бактерии, как правило, не имеют жгутиков, они неподвижны.

Размножаются бактерии делением на две части. Скорость деления может быть очень высокой (каждые 15-20 мин), при этом количество бактерий быстро возрастает. Такое быстрое деление наблюдается на пищевых продуктах и других субстратах, богатых питательными веществами.

ВИРУСЫ

Вирусы - особая группа микроорганизмов, не имеющих клеточного строения. Размеры вирусов измеряются нанометрами (8-150 нм), поэтому их можно увидеть только с помощью электронного микроскопа.

Вирусы вызывают такие распространенные болезни человека, как грипп, вирусный гепатит, корь, а также болезни животных - ящур, чуму животных и многие другие.

Вирусы бактерий называютбактериофагами , вирусы грибов -микофагами и т. п. Бактериофаги встречаются повсюду, где есть микроорганизмы. Фаги вызывают гибель микробной клетки и могут использоваться для лечения и профилактики некоторых инфекционных заболеваний.

ГРИБЫ

Грибы являются особыми растительными организмами, которые не имеют хлорофилла и не синтезируют органические вещества, а нуждаются в готовых органических веществах. Поэтому грибы развиваются на различных субстратах, содержащих питательные вещества. Некоторые грибы способны вызывать болезни растений (рак и фитофтора картофеля и др.), насекомых, животных и человека.

Клетки грибов отличаются от бактериальных наличием ядер и вакуолей и похожи на растительные клетки. Чаще всего они имеют форму нитей -гифов. Из гифов образуетсямицелий, или грибница.

Грибы могут размножаться разными путями, в том числе вегетативным путем в результате деления гиф. Большинство грибов размножаются бесполым и половым путями при помощи образования специальных клеток размножения -спор.

Обширную группу грибов представляют плесневые грибы (рис. 2). Широко распространенные в природе, они могут расти на пищевых продуктах, образуя хорошо видные налеты разной окраски. Причиной порчи продуктов часто являются мукоровые грибы, образующие пушистую белую или серую массу. Мукоровый гриб ризопус вызывает «мягкую гниль» овощей и ягод, а гриб ботритис покрывает налетом и размягчает яблоки, груши и ягоды. Возбудителями плесневения продуктов могут быть грибы из рода пениииллиум.

Отдельные виды грибов способны не только приводить к порче продуктов, но и вырабатывать токсические для человека вещества - микотоксины. К ним относятся некоторые виды грибов рода аспергиллус, рода фузариум и др.

Полезные свойства отдельных видов грибов используют в пищевой и фармацевтической промышленности и других производствах. Например, грибы рода пениииллиум применяются для получения антибиотика пенициллина и в производстве сыров (рокфора и камамбера), грибы рода аспергиллус - в производстве лимонной кислоты и многих ферментных препаратов.

Актиномицеты - микроорганизмы, имеющие признаки и бактерий, и грибов. По строению и биохимическим свойствам актиномицеты аналогичны бактериям, а по характеру размножения, способности образовывать гифы и мицелий похожи на грибы.

Рис. 2. Виды плесневых грибов: 1 - пениииллиум; 2- аспергиллус; 3 - мукор.

ДРОЖЖИ

Дрожжи - одноклеточные неподвижные микроорганизмы размером не более 10-15 мкм. Форма клетки дрожжей бывает чаще круглой или овальной, реже палочковидной, серповидной или похожей на лимон. Клетки дрожжей своим строением похожи на грибы, они также имеют ядро и вакуоли. Размножение дрожжей происходит почкованием, делением или спорами.

Дрожжи широко распространены в природе, их можно обнаружить в почве и на растениях, на пищевых продуктах и различных отходах производства, содержащих сахара. Развитие дрожжей в пищевых продуктах может приводить к их порче, вызывая брожение или закисание. Некоторые виды дрожжей обладают способностью превращать сахар в этиловый спирт и углекислый газ. Этот процесс называется спиртовым брожением и широко используется в пищевой промышленности и виноделии.

Некоторые виды дрожжей кандида вызывают заболевание человека - кандидоз.

3. Техника микроскопирования: устройство микроскопа, приготовление препаратов.

Для исследования дрожжей, бактерий и плесневых грибов применяют микроскопы, предназначенные для рассмотрения прозрачных препаратов в проходящем свете (рис. 3).


Рис. 3. Микроскоп МБИ-1: 1 - зеркало, 2 - конденсор, 3 - предметный столик, 4 - объективы, 5 - револьвер, 6 - окуляр, 7 - тубус, 8 - тубусодержатель, 9 - макрометрический винт, 10 - микрометрический винт, 11 - ножка

Оптическая часть микроскопа . Основной частью оптической системы микроскопа является объектив, увеличивающий изображение предмета. Он состоит из ряда линз, склеенных канадским бальзамом и заключенных в металлическую трубку; на трубке имеется резьба, при помощи которой объектив ввинчивается в специальное гнездо револьвера.

Изображение, даваемое объективом, рассматривают с помощью окуляра, находящегося в верхней части тубуса микроскопа. Биологические микроскопы снабжаются тремя сменными окулярами. На верхней оправе линзы окуляра указано его увеличение. Обычно окуляры дают увеличение в 7, 10 и 15 раз. Общее увеличение объекта микроскопом равно произведению увеличения окуляра на увеличение объектива = 900 раз.

Осветительное устройство располагается под столиком микроскопа и состоит из конденсора с ирис-диафрагмой и зеркала.

Механическая часть микроскопа . Эта часть состоит из штатива, тубусодержателя с револьвером, винтов для передвижения тубуса (макрометрического и микрометрического), осветительного аппарата и предметного столика микроскопа. Основными частями штатива являются нижняя подставка (ножка), придающая микроскопу устойчивость, и тубусодержатель микроскопа.

Техника микроскопирования . Прежде чем начать микроскопирование, необходимо установить правильное освещение. Для этого с микроскопа снимают окуляр и, глядя прямо в объектив, устанавливают зеркало так, чтобы источник света (лампа или окно) были видны посредине объектива. После предварительной установки света на предметный столик микроскопа кладут готовый препарат и закрепляют его зажимами. При помощи макрометрического винта опускают тубус почти до соприкосновения с покровным стеклом. Затем, глядя в окуляр, постепенно поднимают тубус до появления изображения. Для наведения резкости пользуются микрометрическим винтом.

При микроскопиравании следует держать оба глаза открытыми. Смотрят в микроскоп левым глазом.

Техника приготовления препарата для микроскопирования . Каплю исследуемой жидкости наносят на чистое предметное стекло и осторожно накрывают покровным стеклом. Если препарат готовят с плотной питательной среды, то на предметное стекло наносят капельку чистой водопроводной воды, в нее помещают исследуемую культуру и препарат накрывают покровным стеклом. Под последним не должно оставаться пузырьков воздуха, так как они мешают микроскопированию. Избыток жидкости, выступающий из-за покровного стекла, убирают фильтровальной бумагой, заранее нарезанной небольшими узкими полосками. Готовый препарат помещают на предметный столик и исследуют.

Физиология микроорганизмов

План

1. Питание микроорганизмов: сущность, назначение; понятие о плазмолизе, плазмоптисе, тургорном давлении.

1. Питание микроорганизмов: сущность, назначение; понятие о плазмолизе, плазмоптисе, тургорном давлении.

Всем микроорганизмам для осуществления процессов метаболизма, обеспечивающих синтез соединений, из которых построена клетка, а также обеспечивающих расщепление веществ для получения энергии, необходимы питательные вещества.

В качестве питательных веществ и источника энергии микроорганизмы используют различные органические и неорганические соединения.

Между микробной клеткой и внешней средой происходит постоянный интенсивный процесс обмена. Поглощение питательных веществ и выделение продуктов жизнедеятельности происходит у микроорганизмов через всю поверхность полупроницаемой оболочки. В основе механизма проникновения питательных веществ через стенку клетки лежат сложные физико-химические явления. Через полупроницаемую оболочку в тело микробов поступают вода и растворенные в ней питательные вещества. В клетке накапливается материал, необходимый для ее роста.

В тело клетки через ее оболочку не могут проникать вещества, имеющие большие размеры молекул (коллоиды, белки и др.). Они проникают в клетку только после предварительного их расщепления ферментами, выделяемыми в питательную среду.

Процесс питания микроорганизмов имеет ряд особенностей: во – первых, поступление питательных веществ происходит через всю поверхность клетки, во – вторых, микробная клетка обладает исключительной быстротой метаболических реакций, в третьих, микроорганизмы способны довольно быстро адаптироваться к изменяющимся условиям среды обитания.

Посредством питания осуществляется связь организма с внешней средой.

Концентрация питательной среды оказывает влияние на состояние клетки.

Тургор - состояние, которое возникает при оптимальной концентрации веществ в питательной среде. Тургор характеризуется внутренним гидростатическим давлением в клетке, вызывающим напряжение в клеточной стенке. В результате цитоплазма клетки плотно прижимается к цитоплазматической мембране, растягивая ее. В состоянии тургора клетки микроорганизмов нормально осуществляют процессы жизнедеятельности.

Плазмолиз - это процесс сжимания цитоплазмы клетки в результате увеличения осмотического давления в среде и обезвоживания клетки. В результате плазмолиза происходит гибель микроорганизмов. Явление плазмолиза наблюдается при консервировании продуктов с солью и сахаром. Добавление в продукты соли или сахара повышает стойкость продуктов против микробной порчи при хранении. Высокие концентрации соли вызывают плазмолиз клеток, подавляют процесс дыхания, нарушают функции клеточных мембран. При концентрации соли 7-10 % прекращается размножение многих гнилостных бактерий.

Плазмоптиз (от плазма и греч. ptisis - дробление) - набухание микробных клеток и разрушение их оболочек в гипотоническому растворе.

Плазмоптиз - явление, обратное плазмолизу. На­ступает при чрезмерно низком осмотическом давлении внешней среды, когда вследствие высокой разности осмо­тических давлений цитоплазма быстро переполняется во­дой. Это может привести к разрыву клеточной оболочки, что наблюдается, например, при помещении бактерий в дистиллированную воду.

Иногда разрываются целые группы клеток при растрескивании сочных плодов (виды родов Cerasus, Prunus и др. в период длительных дождей).

По способу питания микроорганизмы разделяют на аутотрофные и гетеротрофные.

Аутотрофы способны синтезировать из неорганических веществ (в основном углекислого газа, неорганического азота и воды) органические соединения. В качестве источника энергии для синтеза эти микробы используют световую энергию (фотосинтез) или энергию окислительных реакций (хемосинтез).

Физиология микроорганизмов — раздел микробиологии, изучающий химический состав, процессы питания, дыхания и размножения микроорганизмов.

Химический состав бактерий

Вода. Основная составная часть бактериальной клетки — 75—85 %. Соответственно сухое вещество составляет 15—25 %. Часть воды находится в свободном состоянии, а часть — в связанном. Связанная вода является структурным растворителем. Свободная вода служит дисперсионной средой для коллоидов и растворителем для кристаллических веществ, источником водородных и гидроксильных ионов. Например, гидролитические процессы расщепления белков, углеводов и липидов происходят в результате присоединения к ним воды, а путем отщепления элементов воды могут синтезироваться новые сложные молекулы.

Какие же химические элементы содержатся в микробной клетке? Ведущая роль принадлежит четырем органогенам — кислороду, водороду, углероду и азоту. В процентном отношении к сухому веществу бактерии содержат: углерода — 45—55, азота — 8—15, кислорода — 30, водорода — 6—8. Соответственно дрожжи содержат (%): углерода — 49, азота — 12, кислорода — 31, водорода — 6. В микроскопических грибах (%): углерода — 47, азота — 5, кислорода — 40, водорода — 6.

Минеральные вещества. Кроме органогенов в микробных клетках находятся так называемые зольные элементы— минеральные вещества, составляющие от 3 до 10 % сухого вещества микроорганизмов. Среди них преимущественное значение имеет фосфор, который входит в состав нуклеиновых кислот, липидов, фосфолипидов. Сера содержится в аминокислотах, например в цистине и цистеине. Магний обеспечивает активность ряда ферментов, например протеазы. Микробы без магния не способны проявлять протеолитические свойства. Железо является необходимым элементом для осуществления процессов дыхания и энергетического обмена. Кальций, натрий, калий, силиций, хлор тоже есть в микробных клетках. Содержатся в них и микроэлементы: молибден, кобальт, бор, марганец, цинк, медь, никель и др. Наличие микроэлементов в микробах обязательно; они стимулируют процессы роста и размножения.

Химические элементы образуют в микробных клетках различные органические вещества: белки, углеводы, липиды, витамины, которые распределяются в сухом веществе.

Белки. Это высокомолекулярные биологические полимерные соединения, образующие при гидролизе аминокислоты. Структурные компоненты вирусов, бактерий, клеток растений и животных.

Роль белков в жизни микроба важна и разнообразна: основной структурный материал всех клеточных мембран и выполняют различные функции — каталитическую, двигательную, транспортную, защитную, гормональную, запасную и др.

Белки составляют 50—80 % сухого вещества микробов. Различают два основных вида их: протеины и протеиды. Протеины, или простые белки (альбумины, глобулины, гистоны и др.), при гидролизе распадаются на аминокислоты (тирозин, лейцин, триптофан и др.). Кроме того, они могут содержать углеводный или липидный компонент. Протеиды, или сложные белки, — соединения простых белков (протеинов) с небелковыми группами, нуклеиновой кислотой, полисахаридами, жироподобными и другими веществами. Отсюда различают нуклеопротеиды, гликопротеиды, липопротеиды и др.

Нуклеиновые кислоты представляют собой высокомолекулярные биологические полимеры, построенные из мононуклеотидов. Особенно характерно для них содержание фосфора (8—10 %) и азота (15—16 %), они также содержат углерод, кислород и водород. Содержание нуклеиновых кислот в бактериальной клетке может быть от 10 до 30 % сухого вещества, что зависит от вида бактерий и питательной среды. В большинстве своем они связаны с белками (нуклеопротеиды) и сложными радикалами клеточных структур бактерии. Нуклеиновые кислоты в микробных клетках существуют в виде рибонуклеиновой (РНК) и дезоксирибонуклеиновой (ДНК) кислот. Считают, что РНК преимущественно содержится в цитоплазме бактерий, в мельчайших се зернышках — рибосомах, которые осуществляют синтез ферментов. ДНК находится в ядерном веществе бактерий. ДНК является материальным носителем наследственности всех организмов, в том числе микробов. В ее структуре записана (закодирована) генетическая информация биосинтеза белков.

Углеводы. В бактериях их содержится 12—18 % от сухого вещества. Это многоатомные спирты (сорбит, маннит, дульцит); полисахариды (гексозы, пентозы, гликоген, декстрин), моносахариды (глюкоза, глюкуроновая кислота и др.). Углеводы выполняют энергетическую роль в микробной клетке.

Липиды и липоиды. Липиды — истинные жиры, липоиды — жироподобные вещества. Ряд микробов содержат липиды в значительном количестве. У риккетсий, дрожжей, микобактерий, грибов липидов содержится до 40 %. У других групп микробов содержание липидов по сравнению с белком невелико — не более 3—7 %. Бактериальные липиды состоят из свободных жирных кислот (26—28 %), нейтральных жиров, восков и фосфолипидов. Особого внимания заслуживают фосфолипиды — сложные эфиры высших спиртов и кислот, содержащие азот и фосфор. Они входят в состав токсической фракции ряда микробов.

Липиды играют роль резервных веществ, и в ряде случаев могут быть использованы как исходные компоненты для синтеза белков. С ними связана кислотоустойчивость микобактерий. Они же существенно влияют на проницаемость клеточных мембран, формируют систему пограничных мембран, выполняющих различные функции по обеспечению метаболизма микробной клетки.

Химический состав спирохет, актиномицетов, микоплазм, риккетсий, микроскопических грибов в основном сходен с бактериями.

Ферменты бактерий

Ферменты — глобулярные белки, молекулярная масса которых колеблется от 15 кД до нескольких тысяч. Это простые и сложные белки, например, уреаза, пепсин, трипсин — простые белки, а карбоксипептидаза, амилаза, рибонуклеаза — сложные. Питание и дыхание в микробной клетке происходит с участием ферментов (энзимов), которые являются биологическими катализаторами, т. е. веществами, влияющими на скорость химических реакций, из которых слагается метаболизм микроорганизмов. Незначительное количество катализатора быстро превращает большое количество субстрата, оставаясь при этом в свободном состоянии. Например, одна часть химозина (сычужного фермента) может свернуть до 12 млн частей молока; 1 г амилазы при определенных условиях может превратить в сахар 1 т крахмала.

Ферменты вырабатываются клетками и способны действовать, даже будучи выделенными из нее, что имеет большое практическое значение. Для них характерны термолабильность и высокая специфичность действия, например, фермент лактаза гидролизует лактозу, но не действует на родственные дисахариды (мальтозу, целлобиозу).

Микробная клетка может содержать большое количество ферментов, например, у аспергилла обнаружено до 50 ферментов. Благодаря этому микроорганизмы в состоянии осуществлять одновременно ряд различных реакций в среде, где они находятся.

Принято различать экзо- и эндоферменты.

Экзоферменты не связаны со структурой протоплазмы, легко выделяются в субстрат при жизни микробной клетки (гидролитические ферменты), растворимы в питательной среде и проходят через бактериальные фильтры. Эти ферменты связаны в OGHOBHOM с процессом питания: расщепляют сложные высокомолекулярные вещества (белки, крахмал, клетчатку и др.), т. с. подготавливают питательные вещества к усвоению их микробной клеткой.

Эндоферменты прочно связаны с бактериальной клеткой и действуют только внутриклеточно, осуществляя дальнейшее разложение питательных веществ и превращение их в составные части клетки. К таким ферментам можно отнести, например, дегидрогеназы, оксидазы.

Оптимальная температура для действия ферментов 40—50 °С, для некоторых 58—60 °С; при температуре 100 °С они разрушаются. На активность их влияет и рН среды. У бактерий, растущих при кислых значениях рН (ацидофилы), максимум активности ферментов наблюдается при рН 4,8; у растущих при нейтральном и близком к нейтральному значению рН максимум активности ферментов наблюдается при рН 7,2; у бактерий, способных расти в широком диапазоне рН, реакция среды заметно не влияет на активность ферментов.

Название фермента связано с веществом, на которое он действует, с изменением окончания на «аза» или с природой катализируемой им химической реакции. На этом же основана и современная классификация их. В настоящее время насчитывается более двух тысяч ферментов. Их разделяют на шесть классов:

1. Оксидорсдуктазы — ферменты, катализирующие окислительно-восстановительные реакции. Играют большую роль в процессах биологического получения энергии. К ним относятся дегидрогеназы (НАД, НАДФ, ФАД), каталаза, цитохромы, ферменты, участвующие в переносе электронов водорода, кислорода и др.

2. Трансфсразы — ферменты, катализирующие перенос отдельных радикалов, частей молекул или целых атомных группировок (не водорода) от одних соединений к другим. Например, ацетилтрансферазы переносят остатки уксусной кислоты (СНзСО), а также молекул жирных кислот; фосфотрансферазы или киназы обусловливают перенос остатков фосфорной кислоты (Н2РО3). Известны многие другие трансфсразы (аминотрансферазы и т. д.)

3. Гидролазы — ферменты, катализирующие реакции расщепления и синтеза таких сложных соединений, как белки, жиры и углеводы, с участием воды. К этому классу относятся протеолитические ферменты (или пептидгидролазы), действующие на белки или пептиды; гидролазы глюкозидов, осуществляющие каталитическое расщепление углеводов и глюкозидов фрукто-фуранозидаза, ее -глюкозидаза, ее — и 3 -амилаза, 3 -галактозидаза и др.); экстеразы, катализирующие расщепление и синтез сложных эфиров (липазы, фосфатазы.).

4. Лиазы — ферменты, катализирующие отщепление от субстратов определенных химических групп с образованием двойных связей или присоединение отдельных групп или радикалов по двойным связям. Так, пируватдекарбоксилаза катализирует отщепление СО2 от пировиноградной кислоты:

К лиазам относится также фермент альдолаза, расщепляющий шестиуглеродную молекулу фруктозо-1,6-дифосфата на два трех-углеродных соединения. Альдолаза имеет большое значение к процессе обмена веществ.

5. Изомеразы — ферменты, осуществляющие превращение органических соединений в их изомеры. При изомеризации происходит внутримолекулярное перемещение атомов, атомных группировок, различных радикалов и т. п. Изомеризации подвергаются углеводы и их производные, органические кислоты, аминокислоты и т. д. Ферменты этой группы играют большую роль в ряде процессов метаболизма. К ним относятся триизофосфатизомераза, глюкозофосфатизомераза и др.

6. Лигазы — ферменты, катализирующие синтез сложных органических соединений из простых. Например, аспарагинсинтетаза осуществляет синтез амида аспарагина из аспарагиновой кислоты и аммиака с обязательным участием аденозинтрифосфорной кислоты (АТФ), дающей энергию для этой реакции:

Аспарагиноная кислота + NII3 + АТФ AcnapaiHH + АДФ + 11)14)4

К группе лигаз относятся также карбоксилазы, катализирующие присоединение СО2 к различным органическим кислотам. Например, фермент пируваткарбоксилаза катализирует синтез щевелево-уксусной кислоты из пировиноградной и СО2.

По классификации ферментов каждый фермент имеет шифр, включающий 4 цифры, из которых первая указывает на класс, вторая — на подкласс, третья — на подподкласс и четвертая — на порядковый номер фермента в данном подподклассе. Так, шифр 3.5.1.5 принадлежит карбамидамидогидролазе (уреазе), которую относят к третьему главному классу — гидролазам.

Скорости реакций, катализируемых ферментами, различны и зависят от количества и активности ферментов, концентрации субстрата, рН, температуры, присутствия в среде активаторов и ингибиторов.

Активность измеряют в международных единицах (ME); I ME соответствует количеству фермента, превращающему 1 мкМ (микромоль) (мг/М; 10 М) субстрата в 1 мин в стандартных условиях.

Большое число разнообразных ферментов, синтезируемых клетками микроорганизмов, позволяет использовать их в промышленном производстве для приготовления уксусной, молочной, щавелевой, лимонной кислот, молочных продуктов (сыр, ацидофилин, кумыс и пр.), в виноделии, пивоварении, силосовании. По ферментативной специфичности отдельных бактерий в лабораторных условиях можно дифференцировать их виды, разновидности.

Физиология бактерий

Физиология бактерий изучает жизнеде­ятельность, метаболизм бактерий, вопросы питания, получения энергии роста и размно­жения бактерий, а также их взаимодействие с окружающей средой. Метаболизм бактерий лежит в основе изучения и разработки мето­дов их культивирования, получения чистых культур и их идентификации. Выяснение фи­зиологии патогенных и условно-патогенных бактерий важно для изучения патогенеза вы­зываемых ими инфекционных болезней, для постановки микробиологической диагности­ки, проведения лечения и профилактики ин­фекционных заболеваний, регуляции взаимо­отношения человека с окружающей средой, а также для использования бактерий в биотех­нологических процессах с целью получения биологически активных веществ.

Химический состав бактериальной клетки.

Бактериальная клетка на 80-90 % состоит из воды , и только 10% приходится на долю сухого вещества. Вода в клетке находится в свободном или связанном состоянии. Она выполняет механическую роль в обеспечении тургора, участвует в гидролитических реакци­ях. Удаление воды из клетки путем высуши­вания приводит к приостановке процессов метаболизма, прекращению размножения. Высушивание микроорганизмов в вакууме из замороженного состояния (лиофилизация) прекращает размножение микробов и спо­собствует длительному их сохранению.

Состав сухого вещества распределен следу­ющим образом:

52 % составляют белки, 17 % - углеводы, 9 % - липиды, 16 % - РНК, 3 % - ДНК и 3 % - минеральные вещества.

Белки являются ферментами, а также со­ставной частью клетки, входят в состав цитоплазматической мембраны (ЦПМ) и ее производных, клеточной стенки, жгутиков, спор и некоторых капсул. Некоторые бактериальные белки являются антигенами и токсинами бак­терий. В состав белков бактерий входят от­сутствующие у человека Д-аминокислоты, а также диаминопимелиновая кислота.

Углеводы представлены в бактериальной клетке в виде моно-, ди-, олигосахаров и полисахаридов, а также входят в состав ком­плексных соединений с белками, липидами и другими соединениями. Полисахариды нахо­дятся в составе некоторых капсул, клеточной стенки; крахмал и гликоген являются запас­ными питательными веществами. Некоторые полисахариды принимают участие в форми­ровании антигенов.

Липиды или жиры входят в состав ЦПМ и ее производных, клеточной стенки гра мотрицательных бактерий, а также служат запасными веществами, входят в состав эн­дотоксина грамотрицательных бактерий, в составе ЛПС формируют антигены . В бак­териальных жирах преобладают длинноцепочечные (С 14-С18) насыщенные жирные кислоты и ненасыщенные жирные кислоты, содержащие одну двойную связь. Сложные липиды представлены фосфатидилинозитом. фосфатидилглицерином и фосфатидилэтаноламином. У некоторых бактерий в клетке находятся воски, эфиры миколовой кислоты . Микоплазмы - единственные представители царства Procaryotae , имеющие в составе ЦПМ стеролы. Остальные бактерии в составе ЦПМ и ее производных не имеют стеролов.

Нуклеиновые кислоты . В бактериальной клетке присутствуют все типы РНК: иРНК, тРНК, рРНК. Пуриновые и пиримидиновые нуклеотиды - это те строительные блоки, из которых синтезируются нуклеиновые кисло­ты. Кроме того, пуриновые и пиримидиновые нуклеотиды входят в состав многих кофермен-тов и служат для активации и переноса амино­кислот, моносахаров, органических кислот.

ДНК выполняет в бактериальной клетке на­следственную функцию. Молекула ДНК постро­ена из двух полинуклеотидных цепочек. Каждый нуклеотид состоит из азотистого основания, сахара дезоксирибозы и фосфатной группы (рис. 3.1, а). Азотистые основания представле­ны пуринами(аденин, гуанин) и пиримидинами (тимин, цитозин). Каждый нуклеотид обладает полярностью. У него имеется дезоксирибозный З"-конец и фосфатный 5"-конец. Нуклеотиды со­единяются в полинуклеотидную цепочку пос­редством фосфодиэфирных связей между 5"-кон-цом одного нуклеотида и З"-концом другого. Сцепление между двумя цепями обеспе­чивается водородными связями между компле­ментарными азотистыми основаниями: аденина с тимином, гуанина с цитозином. Нуклеотидные цепи антипараллельны: на каждом из концов линейной молекулы ДНК расположен 5"-конец одной цепи и З"-конец другой цепи. Процентное содержание количества гуанинцитозин(ГЦ)-пар в ДНК определяет степень родства между бактери­ями и используется при определении таксономи­ческого положения бактерий.

Минеральные вещества обнаруживаются в золе, полученной после сжигания клеток. В большом количестве представлены мине­ральные вещества: N, S, Р, Са, К, Mg, Fe, Mn, а также микроэлементы: Zn, Си, Со, Ва.

Азот входит в состав белков, нуклеотидов, коферментов. Сера входит в виде сульфгид-рильных групп в структуру белков. Фосфор в виде фосфатов представлен в нуклеиновых кислотах, АТФ, коферментах. В качестве ак­тиваторов ферментов используются ионы Mg, Fe, Mn. Ионы К и Mg необходимы для акти­вации рибосом. Са является составной частью клеточной стенки грамположительных бакте­рий. У многих бактерий имеются сидерохро- мы, которые обеспечивают транспортировку ионов Fe внутрь клетки в виде растворимых комплексных соединений.

"Классификация бактерий по типам питания и способам получения энергии.

Основной целью метаболизма бактерий является рост, т. е. коор­динированное увеличение всех компонентов клетки. Поскольку основными компонентами бактериальной клетки являются органические соединения, белки, углеводы, нуклеиновые кислоты и липиды, остов которых построен из атомов углерода, то для роста требуется посто­янный приток атомов углерода. В зависимости от источника усвояемого углерода бактерии подразделяют по типам на:

ауготрофы, которые используют для построения своих клеток неорганический углерод, в виде СО,; гетеротрофы (от феч. heteros - другой), которые используют органический углерод. Легко усвояемыми источниками органи­ческого углерода являются гексозы, многоатомные спирты, аминокислоты.

Белки, жиры, углеводы и нуклеиновые кислоты являются крупными полимерными молекулами, которые синтезируются из мо­номеров в реакциях поликонденсации, про­текающих с поглощением энергии. Поэтому для восполнения своей биомассы бактериям помимо источника углерода требуется источ­ник энергии. Энергия запасается бактериаль­ ной клеткой в форме молекул АТФ.

Организмы, для которых источником энергии является слет, называются фототрофами. Те организмы, которые получают энергию за счет окислительно-восстановительных реак ций , называются хемотрофами.

Среди хемотрофов выделяют литотрофы (от греч. lithos - камень), способные использо­вать неорганические доноры электронов (Н 2 , NH 3 , H 2 S, Fe 2+ и др.) и органотрофы, которые используют в качестве доноров электронов органические соединения.

Бактерии, изучаемые медицинской мик­робиологией, являются гетерохемоорганот рофами . Отличительной особенностью этой группы является то, что источник углерода у них является источником энергии. Учитывая разнообразие микромира и типов метаболиз­ма, далее изложение материала ограничено рассмотрением метаболизма у гетерохемоорганотрофов.

Транспорт веществ в бактериальную клетку

Для того, чтобы питательные вещества мог­ли подвергнуться превращениям в цитоплаз­ме клетки, они должны проникнуть в клетку через пограничные слои. Ответственность за поступление в клетку питательных веществ лежит на ЦПМ.

Существует два типа переноса веществ в бак­териальную клетку:

    пассивный

    активный.

При пассивном переносе вещество прони­кает в клетку только по градиенту концентра­ции. Затрат энергии при этом не происходит. Различают две разновидности пассивного пе­ реноса :

    простую диффузию

    облегченную диффузию.

Простая диффузия - неспецифи­ческое проникновение веществ в клетку, при этом решающее значение имеет величина мо­лекул и липофильность. Скорость переноса незначительна.

Облегченная диффузия проте­кает с участием белка-переносчика. Скорость этого способа переноса зависит от концентра­ции вещества в наружном слое.

При активном переносе вещество про­никает в клетку против градиента концен­трации при помощи белка-переносчика - пермеазы. При этом происходит затрата энергии . Имеется два типа активного транс­ порта. При одном типе активного транс порта небольшие молекулы (аминокислоты, некоторые сахара) «накачиваются» в клетку и создают концентрацию, которая может в 100-1000 раз превышать концентрацию этого вещества снаружи клетки. Второй ме­ханизм, получивший название транслока­ ция радикалов, обеспечивает включение в клетку некоторых сахаров (например, глю­козы, фруктозы), которые в процессе пе­реноса фосфорилируются, т. е. химически модифицируются. Для осуществления этих процессов в бактериальной клетке лока­лизуется специальная фосфотрансферная система, составной частью которой является белок-переносчик, находящий­ся в активной фосфорилированной фор­ме. Фосфорилированный белок связывает свободный сахар на наружной поверхности мембраны и транспортирует его в цитоплаз­му, где сахар освобождается в виде фосфата. Поступив в клетку, органический источник углерода и энергии вступает в цепь биохимичес­ких реакций, в результате которых образуются АТФ и ингредиенты для биосинтетических про­цессов. Биосинтетические (конструктивные) и энергетические процессы протекают в клетке одновременно. Они тесно связаны между собой через общие промежуточные продукты, кото­рые называются амфиболитами.

Культивирование бактерий в системах in vi ­ tro осуществляется на питательных средах. Искусственные питательные среды должны отвечать следующим требованиям:

    Каждая питательная среда должна со­ держать воду , так как все процессы жизнеде­ятельности бактерий протекают в воде.

    Для культивирования гетероорганотрофных бактерий в среде должен содержаться органический источник углерода и энергии. Эту функцию выполняют различные органи­ческие соединения: углеводы, аминокислоты, органические кислоты, липиды. Наибольшим энергетическим потенциалом обладает глюко­за, так как она непосредственно подвергается расщеплению с образованием АТФ и ингре­диентов для биосинтетических путей. Часто используется в этих целях пептон - продукт неполного гидролиза белков, состоящий из поли-,олиго- и дипептидов. Пептон также поставляет аминокислоты для построения бактериальных белков.

    Для синтеза белков, нуклеотидов, АТФ, коферментов бактериям требуются источни­ки азота, серы, фосфаты и другие минераль­ные вещества, в том числе микроэлементы.

Источником азота может служить пептон; кроме того, большинство бактерий способны использовать соли аммония в качестве источ­ника азота.

Серу и фосфор бактерии способны утили­зировать в виде неорганических солей: суль­фатов и фосфатов.

Для нормального функционирования фер­ментов бактериям требуются ионы Са 2+ , Mg 2+ , Mn 2+ , Fe 2+ , которые добавляют в питательную среду в виде солей, чаще всего фосфатов.

4. Решающее значение для роста мно­гих микроорганизмов имеет рН среды. Поддерживание определенного рН имеет значение для предотвращения гибели мик­роорганизмов от ими же образованных про­дуктов обмена. С этой целью питательную среду забуферивают, чаще всего используя фосфатный буфер. При сильном выделении бактериями кислот, как продуктов обмена, добавляют к питательной среде карбонат кальция СаС1 2 .

5. Среда должна обладать определенным ос­ мотическим давлением. Большинство бакте­рий способны расти на изотоничных средах, изотоничность которых достигается добавле­нием NaCl в концентрации 0,87 %. Некоторые бактерии не способны расти на средах при концентрации соли в них ниже 1 %. Такие бактерии называются галофильными.

Так как устойчивость к осмотическому дав­лению определяется наличием у бактерий клеточной стенки, бактерии, лишенные кле­точной стенки, микоплазмы L-формы могут расти на питательных средах, содержащих гипертонический раствор, обычно сахарозы.

При необходимости к питательной среде добавляют факторы роста, ингибиторы роста определенных бактерий, субстраты для дейс­твия ферментов, индикаторы.

6 . Питательные среды должны быть сте­ рильными.

В зависимости от консистенции питатель­ ные среды могут быть:

  1. полужидки­ми

    плотными.

Плотность среды достигается добавлением агара.

Агар - полисахарид, получаемый из водо­рослей. Он плавится при температуре 100 °С, но при охлаждении остывает при температу­ре 45-50 °С. Агар добавляют в концентрации 0,5 % - для полужидких сред и 1,5-2 % - для создания плотных сред.

В зависимости от со­става и цели применения различают:

  1. элективные,

    минимальные,

    диффе­ренциально-диагностические

    комбинирован­ные среды.

По составу питательные среды могут быть простыми и сложными.

К простым средам от­носятся пептонная вода, питательный бульон, мясопептонный агар.

На основе этих простых сред готовят сложные, например сахарный и сывороточный бульоны, кровяной агар.

В зависимости от назначения среды под­разделяются на элективные, обогащенные, дифференциально-диагностические.

Под элективными понимают среды, на ко­торых лучше растет какой-то определенный микроорганизм. Например, щелочной агар, имеющий рН 9, служит для выделения холер­ного вибриона. Другие бактерии, в частности кишечная палочка, из-за высокого рН на этой среде не растут.

Среды обогащения - это такие среды, кото­рые стимулируют рост какого-то определен­ного микроорганизма, ингибируя рост других. Например, среда, содержащая селенит натрия, стимулирует рост бактерий рода Salmonella , ингибируя рост кишечной палочки.

среды служат для изучения ферментативной активности бактерий. Они состоят из простой пи­тательной среды с добавлением субстрата, на который должен подействовать фермент, и индикатора, меняющего свой цвет в результа­те ферментативного превращения субстрата. Примером таких сред являются среды Гисса, используемые для изучения способности бак­терий ферментировать сахара.

Комбинированные питательные среды со­четают в себе элективную среду, подавля­ющую рост сопутствующей флоры, и диф­ференциальную среду, диагностирующую ферментативную активность выделяемого микроба. Примером таких сред служат среда Плоскирева и висмут-сульфитный агар, ис­пользуемые при выделении патогенных ки­шечных бактерий. Обе эти среды ингибируют рост кишечной палочки.

Питательные среды . Применяют для выращивания (культи­вирования) микроорганизмов в лабораторных или промышлен­ных условиях. Любая питательная среда должна отвечать сле­дующим требованиям:

    иметь оптимальные для бактерий физико-химические свойства: рН, влажность, осмолярность и др.

Для жизнедеятельности микробной клетки, безусловно, не­обходима вода как основной растворитель и среда для проте­кания всех биохимических реакций.

В бактериологической практике используют среды, различ­ные по происхождению.

Синтетическими питательными сре­дами называют такие, которые состоят из растворов химически чистых соединений в точно установленных дозировках. Пре­имуществом синтетических сред являются их строго постоян­ный состав и воспроизводимость.

Полусинтетические среды включают наряду с химически чистыми соединениями переработанные нативные компоненты неопределенного состава - гидролизаты мяса, дрожжевой экстракт и т.д.

Натуральные питательные среды представляют собой неизмененные натив­ные (природные) компоненты (сыворотка крови, яичный белок и др.).

Различные потребности микробов отдельных видов обуслов­ливают большое разнообразие питательных сред.

По консистенции питательные среды могут быть жидкими, полужидкими, плотными. Для придания плотной консистен­ции к жидкой среде добавляют агар-агар, представляющий собой продукт переработки особого вида морских водорослей. Агар-агар плавится при 80-86 °С, затвердевает при темпера­туре около 40 "Сив застывшем состоянии придает среде плот­ность. В плотные среды добавляют 1,5-2 %, в полужидкие - 0,3-0,7 % агар-агара. В некоторых случаях для получения плотных питательных сред используют нативные компоненты (свернувшаяся сыворотка крови, свернувшийся яичный белок), которые сами по себе являются плотными.

Преимуществом плотных питательных сред является воз­можность получения чистых культур микроорганизмов, а также сообществ микроорганизмов (колоний, бактериальных газо­нов), имеющих макроскопические размеры.

По целевому назначению питательные среды делят на основ­ные, элективные и дифференциально-диагностические.

К основным относятся среды, применяемые для выращива­ния многих бактерий. Это пептические гидролизаты мясных, рыбных продуктов, крови животных или казеина, из которых готовят жидкую среду - питательный бульон и плотную - пи­тательный агар. Такие среды также служат основой для приго­товления сложных питательных сред - сахарных, кровяных и др., удовлетворяющих пищевые потребности патогенных бак­терий.

Элективные питательные среды предназначены для избира­тельного выделения и накопления микроорганизмов опреде­ленного вида (или определенной группы) из материалов, со­держащих разнообразную постороннюю микрофлору. При со­здании элективных питательных сред исходят из биологичес­ких особенностей, которые отличают данные микробы от боль­шинства других. Например, избирательный рост стафилокок­ков наблюдается при повышенной концентрации хлорида на­трия, холерного вибриона - в щелочной среде и т.д.

Дифференциально-диагностические питательные среды при­меняют для различения (дифференциации) отдельных видов (или групп) микробов. Принцип составления этих сред осно­ван на различиях в биохимической активности бактерий раз­ных видов вследствие неодинакового набора ферментов.

В состав дифференциально-диагностической среды входят следующие компоненты: а) основная питательная среда, обеспечивающая размножение бактерий, б) определенный углевод (например, лактоза), способность использовать который явля­ется диагностическим признаком для данного вида, в) цвет­ной индикатор (например, индикатор Андреде), изменение цвета которого свидетельствует о сдвиге рН среды в кислую сторону вследствие ферментации соответствующего углевода. Дифференциально-диагностические среды широко использу­ют в лабораторных микробиологических диагностических исследованиях для дифференциации и идентификации бак­терий.

Культивирование бактерий применяют, в частности, для выделения и идентификации чистых культур

а Выделение чистой культуры бактерий

Выделение отдельных видов бактерий из исследуемого ма­териала, содержащего, как правило, смесь различных микро­организмов, является одним из этапов любого бактериологи­ческого исследования, проводимого с различными целями: диагностики заболеваний, определения микробной обсемененности окружающей среды и т.д.

Чистой культурой называется популяция бактерий одного вида или одной разновидности, выращенная на питательной среде. Многие виды бактерий подразделяют по одному при­знаку на биологические варианты - биовары. Биовары, разли­чающиеся по биохимическим свойствам, называют хемовара ми, по антигенным свойствам - сероварами, по чувствитель­ности к фагу - фаговарами и т.д. Культуры микроорганизмов одного и того же вида или биовара, выделенные из различных источников либо в разное время из одного и того же источни­ка, называют штаммами , которые обычно обозначают номера­ми, какими-либо символами.

Колония представляет собой видимое изолированное сооб­щество микроорганизмов одного вида, образующееся в резуль­тате размножения одной бактериальной клетки на плотной питательной среде (на поверхности или в глубине ее).

Методы выделения чистой культуры

Для выделения чистой культуры применяют методы, ос­нованные на:

    механическом разобщении бактериальных клеток;

    предварительной обработке исследуемого материала физическими или химическими факторами, оказыва­ющими избирательное антибактериальное действие;

    избирательном подавлении размножения сопутствую­щей микрофлоры физическими или химическими факторами во время инкубации посевов;

    способности некоторых бактерий быстро размножать­ся в организме чувствительных к ним лабораторных животных (биопробы).

Основные среды .

Пептонный бульон . Выпускается в сухом виде; состав (г/л): триптический гидролизат кильки; натрия хлорид - 4,95.

Питательный агар. Состав (г/л): ферментативный гидролизат кормовых дрожжей - 12,0; агар - 12,5; натрия хлорид 5,5; рН 7,3+0,1.

основные сложные среды -кровяные, сывороточные . Их готовят путем добавления к питательному ашру 5-10 % дефибринированной крови или сыворотки крови либо 25 % асцитической жидкости. Для приготовления ЖИДКОЙ среды такие же количества сыворотки или асцитической жидкости добавляют к питательному бульону. «Агар Мюллера-Хинтон (основная плотная питательная среда для определения чувствительности бактерий к антибиотикам методом дисков): на 1 л дистиллированной воды мясного настоя (из говядины), 17,5 г гидролизата казеина, Уф г крахмала, 17 г агар-агара.

Элективные питательные среды. Пептонная вода 1 %, рй 8,0. Избирательная для холерного вибриона, который размножается быстро, опережая рост других микроорганизмов. Щелочная реакция среды не препятствует росту возбудителя холеры Vibrio cholerae , но тормозит рост других микроорганиз­мов.

Щелочной агар (плотная среда): питательный агар, рН 7,8, аналогично предыдущей среде элективен для V . cholerae . - Среда Леффлера. Смесь 1 части лошадиной сыворотки и 3 частей сахарного бульона, скошенная в пробирках при нагревании в аппарате Коха, элективна для возбудителя диф­терии Corynebacterium diphtheriae .

УЖелточно-солевой агар (ЖСА). Содержит повышенные концентрации хлорида натрия (8-10 %), которые не препятствуют размножению стафилококков, что обеспечивает селективность среды для данных микроорганизмов. Среда позволяет дифференцировать стафилококки, продуцирующие лецитиназу, от стафилококков, не выделяющих этот фермент, по образованию зон помутнения с перламутровым оттенком вокруг колоний лецитиназоположительных видов (фермент расщепляет лецитин куриного желтка, который вносится в рас­плавленный и остуженный до 45 "С питательный солевой агар).

Дифференциально-диагностические среды .

Среды Гисса . К 1 % пептонной воде добавляют 0,5 % раствор определенного углевода (глюкоза, лактоза, мальтоза, маннит и др.) и индика­тор Андреде (кислый фуксин в 1 н. растворе NaOH), разливают по пробиркам. В пробирки помещают поплавок (трубка длиной около 3 см, один конец которой запаян) для улавливания газообразных продуктов, образующихся при разложении угле­водов. Среда при рН 7,2-7,4 бесцветна. При разложении уг­леводов она приобретает красный цвет.

Среда Ресселя. Применяется при изучении биохими­ческих свойств энтеробактерий (шигелл, сальмонелл). Содер­жит питательный агар, лактозу, глюкозу и индикатор бромти-моловый синий. Приготавливают в пробирках по 6-8 мл в виде столбика со скошенной поверхностью. Цвет незасеянной среды травянисто-зеленый. Посев делают штрихом по скошен­ной поверхности и уколом в глубину столбика. Микроорганиз­мы, ферментирующие глюкозу до кислоты, вызывают измене­ние окраски столбика среды из первоначальной травянисто-зе­леной в желтую; скошенная поверхность при этом приобретает синий цвет. Лактозоположительные микроорганизмы (£. со/0 изменяют цвет столбика и скошенной части среды в желтый. Микроорганизмы, образующие щелочь, изменяют цвет среды в синий. Газообразование отмечается в толще столбика среды.

Среда Эндо. Выпускается в виде порошка, который со­стоит из высушенного питательного агара с 1 % лактозы и индикатора - основного фуксина, обесцвеченного сульфитом натрия. Свежеприготовленная среда бесцветна или бледно-ро­зовая. При росте лактозоположительных бактерий их колонии окрашиваются в темно-красный цвет с металлическим блес­ком; лактозоотрицательные бактерии образуют бесцветные ко­лонии.

Среда Плоскирева (бактоагар Ж). Выпускается в сухом виде и содержит питательный агар с лактозой, брилли­антовым зеленым, солями желчных кислот, минеральными со­лями и индикатором (нейтральный красный). Эта среда является не только дифференциально-диагностической, но и селек­тивной, так как подавляет рост многих микроорганизмов (ки­шечная палочка и др.) и способствует лучшему росту некото­рых патогенных бактерий (возбудители брюшного тифа, пара-тифов, дизентерии). Лактозоотрицательные бактерии образуют на этой среде бесцветные колонии, а лактозоположительные - красные.

Висмут-сульфит агар . Выпускается в сухом виде; со­держит триптический гидролизат кильки, глюкозу, неоргани­ческие соли, бриллиантовый зеленый, агар. Среда предназна­чена для выделения сальмонелл. Дифференцирующие свойства среды основаны на-способности микроорганизмов продуциро­вать H2S, который вступает в реакцию с цитратом висмута и образует соединение черного цвета - сульфит висмута. Среда резко угнетает рост сопутствующей микрофлоры за счет инги-бирующего действия бриллиантового зеленого и сульфита на­трия.

Физиология бактерий – это раздел микробиологии, изучающий химический состав, питание, дыхание, рост и размножение бактерий.

Химический состав бактерий. Микроорганизмы имеют сложное химическое строение. 70% от общей массы бактериальной клетки составляет вода. Часть воды находится в свободном состоянии, а часть - в связанном. В состав бактериальных клеток входят макроэлементы (азот, углерод, кисло­род и водород), микроэлементы (калий, кальций, магний, натрий, сера, фосфор, хлор) и ультрамикроэлементы (бор, ванадий, железо, кобальт, медь, цинк).

Нуклеиновые кислоты представляют собой высокомолеку­лярные биологические полимеры, построенные из мононуклеотидов. Содержание нуклеиновых кислот в бактериальной клетке может быть от 10 до 30% сухого вещества. Нуклеиновые кислоты бактерий представлены РНК (рибону­клеиновая кислота) и ДНК (дезоксирибонуклеиновая кисло­та). РНК в основном содержится в рибосомах, ДНК - в нуклеоиде. ДНК является носителем наследственной информации бактерий.

Липиды - истинные жиры, липоиды - жироподобные вещества. Риккетсии, дрожжи, микобактерии и грибы содержат до 40% липидов. У других групп бактерий содержание липидов составляет 3-7%. С липидами связа­на кислотоустойчивость некоторых бактерий, в частности, микобактерий.

Питание бактерий

1. Углеродное питание. По источнику получения углерода микроорганизмы подразделяются на две группы:

- автотрофы (аутотрофы) - микроорганизмы, способные усваивать углерод из неорганических соединений - углекислоты воздуха или карбонатов. Автотрофы из простых соединений синтезируют белки, полисахариды, нукле­иновые кислоты, витамины и другие структурные и функциональные молекулы.

2. Азотное питание микроорганизмов. По способу усвоения азота бактерии подразделяются на 4 группы:

1. Протеолитические - способные расщеплять белки и пептиды;

2.Дезаминирующие - способные отщеплять аминогруппы только у свободных аминокислот;

3. Нитритно-нитратные - усваивающие окисленные формы азота;

4. Азотфиксирующие - обладающие свойством усваивать атмосферный азот.

3. Потребность в минеральных веществах. Серу бактерии получают из сульфатов или из некоторых аминокислот (цистин, цистеин). Фосфор входит в состав фосфорнокислых солей. Калий, магний и железо микроорганизмы также получают из различных солей. В бактериальной клетке сера входит в состав аминокислот (цистеин, метионин), вита­минов и кофакторов (биотин, липоевая кислота и др.), а фосфор - необходимый компонент нуклеиновых кислот, фосфолипидов, коферментов.

4. Прототрофы и ауксотрофы. Гетеротрофные бактерии, способные расти на питательных средах, в состав которых входит одно органическое вещество в качестве источника углерода, а остальные химические элементы содержатся в составе неорганических соединений, называются прототрофами.

Бактерии, для роста и размножения которых требуются дополнительные органические вещества (факторы роста), называются ауксотрофами. К факторам роста относятся аминокислоты, витамины, пурины, пиримидины, пентозы, гексозы, липиды. Универсальным источником факторов роста является сыворотка крови животных, которую добавляют в питательные среды для культивирования ауксотрофов.

Транспорт питательных веществ в бактериальную клетку.

1. Пассивная диффузия (осмос) - поступление питательных веществ из окружающей среды через клеточную стенку и цитоплазматическую мембрану в результате разницы концентраций питательных веществ внутри бактериальной клетки и в питательной среде. Процесс осуществляется по направлению градиента концентрации вещества без затрат энергии АТФ. Посредством пассивной диффузии в клетку поступает вода и некоторые ионы.

2. Облегченная диффузия. Осуществляется по направлению градиента концентрации с участием специальных белков-переносчиков, которые называются пермеазами. Пермеаза на внешней стороне цито­плазматической мембраны специфически связывается с молекулой субстрата. На внутренней поверхности мембраны происходит диссоциация комплекса пермеаза - субстрат. При этом транспортируемое вещество высвобождается в цитоплазму, а пермеаза вновь принимает первоначальное положение. Облегченная диффузия осуществляется без затрат энергии АТФ.

3. Активный транспорт. Осуществляется против градиента концентрации с помощью пермеаз и с затратой энергии АТФ. По этому механизму в бактериальные клетки поступает основное количество питательных веществ.

4. Перенос групп . Сущность этого механизма состоит в переносе питательного вещества внутрь клетки против градиента концентрации с помощью пермеаз в химически измененной форме с затратой энергии АТФ. По этому механизму внутрь клетки поступают крупные молекулы питательных веществ.

Физиология бактерий. Метаболизм бактерий. Питание микроорганизмов. Ферменты бактерий.
ХИМИЧЕСКИЙ СОСТАВ БАКТЕРИЙ

По химическому составу микроорганизмы мало отличаются от других живых клеток.

  • Вода составляет 75-85% , в ней растворены химические вещества.
  • Сухое вещество 15-25%, в состав входят органические и минеральные соединения
ПИТАНИЕ, ДЫХАНИЕ, РОСТ И РАЗМНОЖЕНИЕ БАКТЕРИЙ

Рис. 13. Клетка делится пополам (фото слева - вначале внутреннее содержимое клетки делится пополам, затем образуется поперечная мембранная перегородка, синтезируется клеточная стенка, завершающая деление). Делящиеся клетки (фото справа).

Бактерии, как правило, характеризуются высокой скоростью размножения. Время деления клетки у различных бактерий колеблется довольно в широких пределах: от 20 минут у кишечной палочки до 14 часов у микобактерий туберкулеза.

На плотных питательных средах бактерии образуют скопления клеток, называемые колониями .

Рис. 14. Колонии кишечной палочки на плотной питательной среде в чашке Петри.
На жидких средах рост бактерий характеризуется образованием пленки на поверхности, равномерного помутнения либо осадка .

ФЕРМЕНТЫ БАКТЕРИЙ

Важную роль в обмене веществ микроорганизмов играют ферменты.
Различают:

  • эндоферменты – локализуются в цитоплазме клеток;
  • экзоферменты – выделяются в окружающую среду.
Ферменты агрессии разрушают ткань и клетки, обусловливая широкое распространение микробов и их токсинов в инфицированной ткани.

Биохимические свойства бактерий определяются составом ферментов:

  • сахаролитические –расщепление углеводов;
  • протеолитические – расщепление белков,
  • липолитические расщепление жиров,
и являются важным диагностиче6ским признаком при идентификации микроорганизов.
Для многих патогенных микроорганизмов оптимальными являются температура 37°С и рН 7,2-7,4.
Вода. Значимость воды для бактерий. Вода составляет около 80% массы бактерий. Рост и развитие бактерий облигатно зависят от наличия воды, так как все химические реакции, протекающие в живых организмах, реализуются в водной сред е. Для нормального роста и развития микроорганизмов необходимо присутствие воды в окружающей среде.
Для бактерий содержание воды в субстрате должно быть более 20%. Вода должна находиться в доступной форме: в жидкой фазе в интервале температур от 2 до 60 °С; этот интервал известен как биокинетическая зона. Хотя в химическом отношении вода весьма устойчива, продукты её ионизации - ионы Н+ и ОН" оказывают очень большое влияние на свойства практически всех компонентов клетки (белков, нуклеиновых кислит, липидов и т.д.). Так, каталитическая активность ферментов в значительной мере зависит от концентрации ионов Н+ и ОН".
ПРИНЦИПЫ КУЛЬТИВИРОВАНИЯ МИКРООРГАНИЗМОВ

Большинство бактерий и грибов культивируются на естественных и искусственных, плотных и жидких питательных средах, в оптимальных для них условиях. На питательных средах микроорганизмы при размножении образуют определенной морфологии колонии, что определяет их культуральные свойства .
Идентификацию бактерий в исследуемом материале проводят на основании определения морфологических, биохимических, культуральных и других свойств микроскопическими, микробиологическими и другими методами исследования.
Усваиваемые бактериальной клеткой соединения. Пути поступления веществ в бактериальную клетку. Пассивный перенос. Диффузия. Основные соединения, усваиваемые бактериальной клеткой , - углеводы, аминокислоты, органические кислоты, жирные кислоты, минеральные вещества, витамины и др. Бактериям совершенно безразличны источники питательных веществ; образно говоря, они «лишены вкуса и не страдают несварением желудка». Более того, бактерии иногда утилизируют вещества, не пригодные для животных клеток (например, карболовую кислоту, парафин, мыло и др.).
Подобно прочим формам жизни, бактерии нуждаются в одних и тех же макроэлементах - С, Н, О, N, P, S, К, Са, Mg, Fe. Микроэлементы (следовые элементы) - Mn, Mo, Zn, Си, Со, Ni, Va, В, С], Na, Se, Si, Wo - не нужны каждому организму, но бактериям они необходимы для синтеза коферментов либо поддержания специфического тина метаболизма. Например, для оптимального роста некоторые бактерии нуждаются в высоких концентрациях Na+; их называют галофилами [от греч. hals, соль]. Помимо источников углерода, энергии и элементов минерального питания, многие микроорганизмы нуждаются в некоторых дополнительных веществах, называемых факторами роста. Количественная потребность в питательных элементах и их содержание у различных бактерий варьируют, но принципиально химический состав бактериальной клетки сходен с другими живыми клетками (исключением является отсутствие у бактерий стеролов).
Пути поступления веществ в бактериальную клетку Для того чтобы питательные вещества могли подвергнуться соответствующим превращениям в клетке, они прежде всего должны в неё проникнуть. Но большинство бактерий обитает в условиях, мало пригодных для поддержания строгих соотношений воды, неорганических и органических веществ, без которых их жизнь просто невозможна. Клеточная стенка бактерий не. является существенным барьером для небольших молекул и ионов, но задерживает макромолекулы. Истинный барьер, обеспечивающий избирательное поступление веществ в клетку, - ЦПМ. Она проницаема для одних веществ и непроницаема для других. Потоки веществ движутся в обоих направлениях (внутрь и наружу). Эти перемещения обеспечивают разнообразные транспортные системы, необходимые для выполнения двух важнейших задач.
1. Обеспечение адекватных концентраций веществ , участвующих в основных биохимических реакциях, в том числе и обеспечение, при необходимости, их быстрого поступления внутрь клетки, невзирая на концентрацию этих веществ в окружающей среде.
2. Поддержание осмотического давления , оптимального для протекания биохимических реакций. Поступление различных веществ внутрь бактериальной клетки реализуют три механизма: пассивный перенос, активный перенос и транспорт, обусловленный фосфорилированисм.
Механизмы транспорта через цитоплазматическую мембрану .
Пассивный перенос веществ в бактериальную клетку Многие вещества способны неспецифически проникать в бактериальную клетку за счёт различия их концентраций по обе стороны ЦПМ. При этом они поступают в клетку только до выравнивания градиента концентрации с внешним раствором. Такое поступление веществ происходит пассивно, без прямых энергетических затрат. Существует два вида пассивной диффузии: простая и облегчённая.
Простая диффузия . Проникновение веществ носит неспецифический характер и целиком зависит от размеров молекул и их липофильности. Скорость подобного переноса незначительна.
Облегчённая диффузия . Механизм транспорта носит аналогичный характер, но проникновение облегчают помощники - специфические мембранные белки-пермеазы, способствующие прохождению различных молекул через ЦПМ. Транспорт сопровождается образованием комплекса «вещество-пермеаза». После преодоления ЦПМ комплекс диссоциирует, а перме-аза используется для последующего «проведения» других молекул. Подобный тип транспорта реализуется по градиенту концентрации и характерен для эукариотов при поглощении Сахаров.
У прокариотов единственный пример облегчённой диффузии - проникновение глицерина в клетки бактерий кишечной группы. При этом концентрация проникшего глицерина практически равна его концентрации в окружающей среде. В последующем (в результате реакций фосфорилирования) глицерин трансформируется в глицерин-3-фосфат.
Фермент. Ферменты бактерий. Регуляторные (аллостерические) ферменты. Эффекторные ферменты. Определение ферментативной активности бактерий. Все питательные вещества и любые элементы, подвергающиеся взаимодействиям и превращениям с участием бактерий, вступают в реакции при участии ферментов. Ферменты [от лат. fermentum, закваска], или энзимы [от греч. enzyme, дрожжи или закваска], - специфичные и эффективные белковые катализаторы, присутствующие во всех живых клетках. За каждое превращение одного соединения в другое ответственен особый фермент.
Ферменты снижают энергию активации , обеспечивая протекание таких химических реакций, которые без них могли бы проходить только при высокой температуре, избыточном давлении и при других нефизиологических условиях, неприемлемых для живой клетки.
Ферменты увеличивают скорость реакции примерно на 10 порядков, что сокращает полупериод какой-либо реакции с 300 лет до одной секунды.
Ферменты «узнают» субстрат по пространственному расположению его молекулы и распределению зарядов в ней. За связывание с субстратом отвечает определённый участок молекулы ферментативного белка - его каталитический центр. При этом образуется промежуточный фермент-субстратный комплекс, который затем распадается с образованием продукта реакции и свободного фермента.
Регуляторные (аллостерические) ферменты Регуляторные (аллостерические) ферменты воспринимают различные метаболические сигналы и в соответствии с ними изменяют свою каталитическую активность.
Эффекторные ферменты Известно шесть основных классов ферментов, катализирующих следующие реакции: оксидоредуктазы - перенос электронов; трансферазы - перенос различных химических групп; гидролазы - перенос функциональных групп на молекулу воды; лиазы - присоединение групп по двойным связям и обратные реакции; изомера-зы - перенос групп внутри молекулы с образованием изомерных форм; лигазы - образование связей С-С, C-S, С-О, C-N за счёт реакций конденсации, сопряжённых с распадом аденозинтрифосфата (АТФ).
Бактерии способны синтезировать все ферменты , необходимые для утилизации широкого спектра питательных субстратов. Определённый субстрат в среде вызывает синтез ферментов, обеспечивающих его катаболизм. В этом случае говорят об индукции катаболических ферментов индуцирующим субстратом (иидуцибельные ферменты). Образование анаболических ферментов в процессах биосинтеза регулируется путём репрессии конечным продуктом (репрессибельные ферменты). Если в среде имеются одновременно два субстрата, то бактерия использует субстрат, обеспечивающий более быстрый рост. Синтез ферментов для расщепления второго субстрата репрессируется; такой вариант известен как катаболитная репрессия. Ферменты, синтезируемые вне зависимости от условий среды, - конститутивные ферменты.
Определение ферментативной активности бактерий Определение ферментативной активности бактерий играет огромную роль в их идентификации. Например, все аэробы или факультативные анаэробы обладают супероксид дисмутазой и каталазой - ферментами, защищающими клетку от токсичных продуктов кислородного метаболизма. Практически все облигатные анаэробы не синтезируют эти ферменты. Только одна группа аэробных бактерий - молочнокислые бактерии каталазонегативны, но аккумулируют пероксидазу - фермент, катализирующий окисление органических соединений под действием Н202 (восстанавливается до воды). Наличие аргининдигидролазы - диагностический признак, позволяющий различить сапрофитические виды Pseudomonas от фитопатогенных. Среди пяти основных групп семейства Enterobacteriaceae только две - Escherichiae и Erwiniae- не синтезируют уреазу. Часто вирулентность штамма связана с повышенной активностью ферментов, ответственных за синтез токсинов.
Получение микробных ферментов - важнейшая отрасль промышленной микробиологии. Например, для улучшения пищеварения применяют готовые препараты ферментов - амилазы, целлюлазы, протеазы, липазы, облегчающих соответственно гидролиз крахмала, целлюлозы, белка и липидов. При изготовлении сладостей для предупреждения кристаллизации сахарозы применяют инвертазу дрожжей, для осветления фруктовых соков - пектиназу. Коллагеназа клостридий и стрептокиназа стрептококков, гидролизующие белки, способствуют заживлению ран и ожогов. Литические ферменты бактерий, секретируемые в окружающую среду, действуют на клеточные стенки патогенных микроорганизмов и служат эффективным средством в борьбе с последними, даже если они обладают множественной устойчивостью к антибиотикам. В качестве инструментария в биоорганической химии, генной инженерии и генотерапии используют выделенные из бактерий рибонуклеазы, дезоксирибонуклеазы, полимеразы, ДНК-лигазы и прочие ферменты, направленно модифицирующие нуклеиновые кислоты.