Взвешенная дисперсия формула. Дисперсия и стандартное отклонение

Дисперсия в статистике определяется как среднее квадратическое отклонение индивидуальных значений признака в квадрате от средней арифметической. Распространенный способ расчета квадратов отклонений вариантов от средней с их последующим усреднением.

В экономически-статистическом анализе вариацию признака принято оценивать чаще всего с помощью среднего квадратического отклонения, оно представляет собой корень квадратный из дисперсии.

(3)

Характеризует абсолютную колеблемость значений варьирующего признака выражается в тех же единицах измерения, что и варианты. В статистике часто возникает необходимость сравнения вариации различных признаков. Для таких сравнений используется относительный показатель вариации, коэффициент вариации.

Свойства дисперсии:

1)если из всех вариант вычесть какое-либо число, то дисперсия от этого не изменится;

2) если все значения вариант разделить на какое-либо число b, то дисперсия уменьшится в b^2 раз, т.е.

3) если исчислить средний квадрат отклонений от какого-либо числа с неравного средней арифметической, то он будет больше дисперсии . При этом на вполне определенную величину на квадрат разности между средней величиной поc.

Дисперсию можно определить как разницу между средним квадратом и средней в квадрате.

17. Групповая и межгрупповая вариации. Правило сложения дисперсии

Если статистическая совокупность разбита на группы или части по изучаемому признаку, то для такой совокупности могут быть исчислены следующие виды дисперсии: групповые (частные), средне групповые (частных), и межгрупповая.

Общая дисперсия – отражает вариацию признака за счет всех условий и причин, действующих в данной статистической совокупности.

Групповая дисперсия - равна среднему квадрату отклонений отдельных значений признака внутри группы от средней арифметической этой группы, называемой групповой средней. При этом групповая средняя не совпадает с общей средней для всей совокупности.

Групповая дисперсия отражает вариацию признака только за счет условий и причин, действующих внутри группы.

Средняя групповых дисперсий - определяется как среднее взвешенное арифметическое из дисперсий групповых, причем весами являются объемы групп.

Межгрупповая дисперсия - равна среднему квадрату отклонений групповых средних от общей средней.

Межгрупповая дисперсия характеризует вариацию результативного признака за счет группировочного признака.

Между рассмотренными видами дисперсий существует определенное соотношение: общая дисперсия равна сумме средней групповой и межгрупповой дисперсии.

Это соотношение называется правилом сложения дисперсии.

18. Динамический ряд и его составные элементы. Виды динамических рядов.

Ряд в статистике - это цифровые данные, показывающие, изменение явления во времени или в пространстве и дающие возможность производить статистическое сравнение явлений как в процессе их развития во времени, так и по различным формам и видам процессов. Благодаря этому можно обнаружить взаимную зависимость явлений.

Процесс развития движения социальных явлений во времени в статистике принято называть динамикой. Для отображения динамики строят ряды динамики (хронологические, временные), которые представляют собой ряды изменяющихся во времени значений статистического показателя (например, число осуждённых за 10 лет), расположенных в хронологическом порядке. Их составными элементами являются цифровые значения данного показателя и периоды или моменты времени, к которым они относятся.

Важнейшая характеристика рядов динамики - их размер (объём, величина) того или иного явления, достигнутых в определённых период или к определённому моменту. Соответственно, величина членов ряда динамики - его уровень. Различают начальный, средний и конечный уровни динамического ряда. Начальный уровень показывает величину первого, конечный - величину последнего члена ряда. Средний уровень представляет собой среднюю хронологическую вариационного рада и исчисляется в зависимости от того, является ли динамический ряд интервальным или моментным.

Ещё одна важная характеристика динамического ряда - время, прошедшее от начального до конечного наблюдения, или число таких наблюдений.

Существуют различные виды рядов динамики, их можно классифицировать по следующим признакам.

1) В зависимости от способа выражения уровней ряды динамики подразделяются на ряды абсолютных и производных показателей (относительных и средних величин).

2) В зависимости от того, как выражают уровни ряда состояние явления на определённые моменты времени (на начало месяца, квартала, года и т.п.) или его величину за определённые интервалы времени (например, за сутки, месяц, год и т.п.), различают соответственно моментные и интервальные ряды динамики. Моментные ряды в аналитической работе правоохранительных органов используются сравнительно редко.

В теории статистики выделяют рады динамики и по ряду других классификационных признаков: в зависимости от расстояния между уровнями - с равностоящими уровнями и неравностоящими уровнями во времени; в зависимости от наличия основной тенденции изучаемого процесса - стационарные и не стационарные. При анализе динамических рядов исходят из следующего уровни ряда представляют в виде составляющих:

Y t = TP + Е (t)

где ТР – детерминированная составляющая определяющая общую тенденцию изменения во времени или тренд.

Е (t) – случайная компонента, вызывающая колеблимость уровней.

По данным выборочного обследования произведена группировка вкладчиков по размеру вклада в Сбербанке города:

Определите:

1) размах вариации;

2) средний размер вклада;

3) среднее линейное отклонение;

4) дисперсию;

5) среднее квадратическое отклонение;

6) коэффициент вариации вкладов.

Решение:

Данный ряд распределения содержит открытые интервалы. В таких рядах условно принимается величина интервала первой группы равна величине интервала последующей, а величина интервала последней группы равна величине интервала предыдущей.

Величина интервала второй группы равна 200, следовательно, и величина первой группы также равна 200. Величина интервала предпоследней группы равна 200, значит и последний интервал будет иметь величину, равную 200.

1) Определим размах вариации как разность между наибольшим и наименьшим значением признака:

Размах вариации размера вклада равен 1000 рублей.

2) Средний размер вклада определим по формуле средней арифметической взвешенной.

Предварительно определим дискретную величину признака в каждом интервале. Для этого по формуле средней арифметической простой найдём середины интервалов.

Среднее значение первого интервала будет равно:

второго - 500 и т. д.

Занесём результаты вычислений в таблицу:

Размер вклада, руб. Число вкладчиков, f Середина интервала, х xf
200-400 32 300 9600
400-600 56 500 28000
600-800 120 700 84000
800-1000 104 900 93600
1000-1200 88 1100 96800
Итого 400 - 312000

Средний размер вклада в Сбербанке города будет равен 780 рублей:

3) Среднее линейное отклонение есть средняя арифметическая из абсолютных отклонений отдельных значений признака от общей средней:

Порядок расчёта среднего линейонго отклонения в интервальном ряду распределения следующий:

1. Вычисляется средняя арифметическая взвешенная, как показано в п. 2).

2. Определяются абсолютные отклонения вариант от средней:

3. Полученные отклонения умножаются на частоты:

4. Находится сумма взвешенных отклонений без учёта знака:

5. Сумма взвешенных отклонений делится на сумму частот:

Удобно пользоваться таблицей расчётных данных:

Размер вклада, руб. Число вкладчиков, f Середина интервала, х
200-400 32 300 -480 480 15360
400-600 56 500 -280 280 15680
600-800 120 700 -80 80 9600
800-1000 104 900 120 120 12480
1000-1200 88 1100 320 320 28160
Итого 400 - - - 81280

Среднее линейное отклонение размера вклада клиентов Сбербанка составляет 203,2 рубля.

4) Дисперсия - это средняя арифметическая квадратов отклонений каждого значения признака от средней арифметической.

Расчёт дисперсии в интервальных рядах распределения производится по формуле:

Порядок расчёта дисперсии в этом случае следующий:

1. Определяют среднюю арифметическую взвешенную, как показано в п. 2).

2. Находят отклонения вариант от средней:

3. Возводят в квадрат отклонения каждой варианты от средней:

4. Умножают квадраты отклонений на веса (частоты):

5. Суммируют полученные произведения:

6. Полученная сумма делится на сумму весов (частот):

Расчёты оформим в таблицу:

Размер вклада, руб. Число вкладчиков, f Середина интервала, х
200-400 32 300 -480 230400 7372800
400-600 56 500 -280 78400 4390400
600-800 120 700 -80 6400 768000
800-1000 104 900 120 14400 1497600
1000-1200 88 1100 320 102400 9011200
Итого 400 - - - 23040000

Наряду с изучением вариации признака по всей по всей совокупности в целом часто бывает необходимо проследить количественные изменения признака по группам, на которые разделяется совокупность, а также и между группами. Такое изучение вариации достигается посредством вычисления и анализа различных видов дисперсии.
Выделяют дисперсию общую, межгрупповую и внутригрупповую .
Общая дисперсия σ 2 измеряет вариацию признака по всей совокупности под влиянием всех факторов, обусловивших эту вариацию, .

Межгрупповая дисперсия (δ) характеризует систематическую вариацию, т.е. различия в величине изучаемого признака, возникающие под влиянием признака-фактора, положенного в основание группировки. Она рассчитывается по формуле:
.

Внутригрупповая дисперсия (σ) отражает случайную вариацию, т.е. часть вариации, происходящую под влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основание группировки. Она вычисляется по формуле:
.

Средняя из внутригрупповых дисперсий : .

Существует закон, связывающий 3 вида дисперсии. Общая дисперсия равна сумме средней из внутригрупповых и межгрупповой дисперсии: .
Данное соотношение называют правилом сложения дисперсий .

В анализе широко используется показатель, представляющий собой долю межгрупповой дисперсии в общей дисперсии. Он носит название эмпирического коэффициента детерминации (η 2): .
Корень квадратный из эмпирического коэффициента детерминации носит название эмпирического корреляционного отношения (η) :
.
Оно характеризует влияние признака, положенного в основание группировки, на вариацию результативного признака. Эмпирическое корреляционное отношение изменяется в пределах от 0 до 1.
Покажем его практическое использование на следующем примере (табл. 1).

Пример №1 . Таблица 1 - Производительность труда двух групп рабочих одного из цехов НПО «Циклон»

Рассчитаем общую и групповые средние и дисперсии:




Исходные данные для вычисления средней из внутригрупповых и межгрупповой дисперсии представлены в табл. 2.
Таблица 2
Расчет и δ 2 по двум группам рабочих.


Группы рабочих
Численность рабочих, чел. Средняя, дет./смен. Дисперсия

Прошедшие техническое обучение

5 95 42,0

Не прошедшие техническое обучение

5 81 231,2

Все рабочие

10 88 185,6
Рассчитаем показатели. Средняя из внутригрупповых дисперсий:
.
Межгрупповая дисперсия

Общая дисперсия:
Таким образом, эмпирическое корреляционное соотношение: .

Наряду с вариацией количественных признаков может наблюдаться и вариация качественных признаков. Такое изучение вариации достигается посредством вычисления следующих видов дисперсий:

Внутригрупповая дисперсия доли определяется по формуле

где n i – численность единиц в отдельных группах.
Доля изучаемого признака во всей совокупности, которая определяется по формуле:
Три вида дисперсии связаны между собой следующим образом:
.

Это соотношение дисперсий называется теоремой сложения дисперсий доли признака.

Дисперсия случайной величины является мерой разброса значений этой величины. Малая дисперсия означает, что значения сгруппированы близко друг к другу. Большая дисперсия свидетельствует о сильном разбросе значений. Понятие дисперсии случайной величины применяется в статистике. Например, если сравнить дисперсию значений двух величин (таких как результаты наблюдений за пациентами мужского и женского пола), можно проверить значимость некоторой переменной. Также дисперсия используется при построении статистических моделей, так как малая дисперсия может быть признаком того, что вы чрезмерно подгоняете значения.

Шаги

Вычисление дисперсии выборки

  1. Запишите значения выборки. В большинстве случаев статистикам доступны только выборки определенных генеральных совокупностей. Например, как правило, статистики не анализируют расходы на содержание совокупности всех автомобилей в России – они анализируют случайную выборку из нескольких тысяч автомобилей. Такая выборка поможет определить средние расходы на автомобиль, но, скорее всего, полученное значение будет далеко от реального.

    • Например, проанализируем количество булочек, проданных в кафе за 6 дней, взятых в случайном порядке. Выборка имеет следующий вид: 17, 15, 23, 7, 9, 13. Это выборка, а не совокупность, потому что у нас нет данных о проданных булочках за каждый день работы кафе.
    • Если вам дана совокупность, а не выборка значений, перейдите к следующему разделу.
  2. Запишите формулу для вычисления дисперсии выборки. Дисперсия является мерой разброса значений некоторой величины. Чем ближе значение дисперсии к нулю, тем ближе значения сгруппированы друг к другу. Работая с выборкой значений, используйте следующую формулу для вычисления дисперсии:

    • s 2 {\displaystyle s^{2}} = ∑[( x i {\displaystyle x_{i}} - x̅) 2 {\displaystyle ^{2}} ] / (n - 1)
    • s 2 {\displaystyle s^{2}} – это дисперсия. Дисперсия измеряется в квадратных единицах измерения.
    • x i {\displaystyle x_{i}} – каждое значение в выборке.
    • x i {\displaystyle x_{i}} нужно вычесть x̅, возвести в квадрат, а затем сложить полученные результаты.
    • x̅ – выборочное среднее (среднее значение выборки).
    • n – количество значений в выборке.
  3. Вычислите среднее значение выборки. Оно обозначается как x̅. Среднее значение выборки вычисляется как обычное среднее арифметическое: сложите все значения в выборке, а затем полученный результат разделите на количество значений в выборке.

    • В нашем примере сложите значения в выборке: 15 + 17 + 23 + 7 + 9 + 13 = 84
      Теперь результат разделите на количество значений в выборке (в нашем примере их 6): 84 ÷ 6 = 14.
      Выборочное среднее x̅ = 14.
    • Выборочное среднее – это центральное значение, вокруг которого распределены значения в выборке. Если значения в выборке группируются вокруг выборочного среднего, то дисперсия мала; в противном случае дисперсия велика.
  4. Вычтите выборочное среднее из каждого значения в выборке. Теперь вычислите разность x i {\displaystyle x_{i}} - x̅, где x i {\displaystyle x_{i}} – каждое значение в выборке. Каждый полученный результат свидетельствует о мере отклонения конкретного значения от выборочного среднего, то есть как далеко это значение находится от среднего значения выборки.

    • В нашем примере:
      x 1 {\displaystyle x_{1}} - x̅ = 17 - 14 = 3
      x 2 {\displaystyle x_{2}} - x̅ = 15 - 14 = 1
      x 3 {\displaystyle x_{3}} - x̅ = 23 - 14 = 9
      x 4 {\displaystyle x_{4}} - x̅ = 7 - 14 = -7
      x 5 {\displaystyle x_{5}} - x̅ = 9 - 14 = -5
      x 6 {\displaystyle x_{6}} - x̅ = 13 - 14 = -1
    • Правильность полученных результатов легко проверить, так как их сумма должна равняться нулю. Это связано с определением среднего значения, так как отрицательные значения (расстояния от среднего значения до меньших значений) полностью компенсируются положительными значениями (расстояниями от среднего значения до больших значений).
  5. Как отмечалось выше, сумма разностей x i {\displaystyle x_{i}} - x̅ должна быть равна нулю. Это означает, что средняя дисперсия всегда равна нулю, что не дает никакого представления о разбросе значений некоторой величины. Для решения этой проблемы возведите в квадрат каждую разность x i {\displaystyle x_{i}} - x̅. Это приведет к тому, что вы получите только положительные числа, которые при сложении никогда не дадут 0.

    • В нашем примере:
      ( x 1 {\displaystyle x_{1}} - x̅) 2 = 3 2 = 9 {\displaystyle ^{2}=3^{2}=9}
      (x 2 {\displaystyle (x_{2}} - x̅) 2 = 1 2 = 1 {\displaystyle ^{2}=1^{2}=1}
      9 2 = 81
      (-7) 2 = 49
      (-5) 2 = 25
      (-1) 2 = 1
    • Вы нашли квадрат разности - x̅) 2 {\displaystyle ^{2}} для каждого значения в выборке.
  6. Вычислите сумму квадратов разностей. То есть найдите ту часть формулы, которая записывается так: ∑[( x i {\displaystyle x_{i}} - x̅) 2 {\displaystyle ^{2}} ]. Здесь знак Σ означает сумму квадратов разностей для каждого значения x i {\displaystyle x_{i}} в выборке. Вы уже нашли квадраты разностей (x i {\displaystyle (x_{i}} - x̅) 2 {\displaystyle ^{2}} для каждого значения x i {\displaystyle x_{i}} в выборке; теперь просто сложите эти квадраты.

    • В нашем примере: 9 + 1 + 81 + 49 + 25 + 1 = 166 .
  7. Полученный результат разделите на n - 1, где n – количество значений в выборке. Некоторое время назад для вычисления дисперсии выборки статистики делили результат просто на n; в этом случае вы получите среднее значение квадрата дисперсии, которое идеально подходит для описания дисперсии данной выборки. Но помните, что любая выборка – это лишь небольшая часть генеральной совокупности значений. Если взять другую выборку и выполнить такие же вычисления, вы получите другой результат. Как выяснилось, деление на n - 1 (а не просто на n) дает более точную оценку дисперсии генеральной совокупности, в чем вы и заинтересованы. Деление на n – 1 стало общепринятым, поэтому оно включено в формулу для вычисления дисперсии выборки.

    • В нашем примере выборка включает 6 значений, то есть n = 6.
      Дисперсия выборки = s 2 = 166 6 − 1 = {\displaystyle s^{2}={\frac {166}{6-1}}=} 33,2
  8. Отличие дисперсии от стандартного отклонения. Заметьте, что в формуле присутствует показатель степени, поэтому дисперсия измеряется в квадратных единицах измерения анализируемой величины. Иногда такой величиной довольно сложно оперировать; в таких случаях пользуются стандартным отклонением, которое равно квадратному корню из дисперсии. Именно поэтому дисперсия выборки обозначается как s 2 {\displaystyle s^{2}} , а стандартное отклонение выборки – как s {\displaystyle s} .

    • В нашем примере стандартное отклонение выборки: s = √33,2 = 5,76.

    Вычисление дисперсии совокупности

    1. Проанализируйте некоторую совокупность значений. Совокупность включает в себя все значения рассматриваемой величины. Например, если вы изучаете возраст жителей Ленинградской области, то совокупность включает возраст всех жителей этой области. В случае работы с совокупностью рекомендуется создать таблицу и внести в нее значения совокупности. Рассмотрим следующий пример:

      • В некоторой комнате находятся 6 аквариумов. В каждом аквариуме обитает следующее количество рыб:
        x 1 = 5 {\displaystyle x_{1}=5}
        x 2 = 5 {\displaystyle x_{2}=5}
        x 3 = 8 {\displaystyle x_{3}=8}
        x 4 = 12 {\displaystyle x_{4}=12}
        x 5 = 15 {\displaystyle x_{5}=15}
        x 6 = 18 {\displaystyle x_{6}=18}
    2. Запишите формулу для вычисления дисперсии генеральной совокупности. Так как в совокупность входят все значения некоторой величины, то приведенная ниже формула позволяет получить точное значение дисперсии совокупности. Для того чтобы отличить дисперсию совокупности от дисперсии выборки (значение которой является лишь оценочным), статистики используют различные переменные:

      • σ 2 {\displaystyle ^{2}} = (∑( x i {\displaystyle x_{i}} - μ) 2 {\displaystyle ^{2}} ) / n
      • σ 2 {\displaystyle ^{2}} – дисперсия совокупности (читается как «сигма в квадрате»). Дисперсия измеряется в квадратных единицах измерения.
      • x i {\displaystyle x_{i}} – каждое значение в совокупности.
      • Σ – знак суммы. То есть из каждого значения x i {\displaystyle x_{i}} нужно вычесть μ, возвести в квадрат, а затем сложить полученные результаты.
      • μ – среднее значение совокупности.
      • n – количество значений в генеральной совокупности.
    3. Вычислите среднее значение совокупности. При работе с генеральной совокупностью ее среднее значение обозначается как μ (мю). Среднее значение совокупности вычисляется как обычное среднее арифметическое: сложите все значения в генеральной совокупности, а затем полученный результат разделите на количество значений в генеральной совокупности.

      • Имейте в виду, что средние величины не всегда вычисляются как среднее арифметическое.
      • В нашем примере среднее значение совокупности: μ = 5 + 5 + 8 + 12 + 15 + 18 6 {\displaystyle {\frac {5+5+8+12+15+18}{6}}} = 10,5
    4. Вычтите среднее значение совокупности из каждого значения в генеральной совокупности. Чем ближе значение разности к нулю, тем ближе конкретное значение к среднему значению совокупности. Найдите разность между каждым значением в совокупности и ее средним значением, и вы получите первое представление о распределении значений.

      • В нашем примере:
        x 1 {\displaystyle x_{1}} - μ = 5 - 10,5 = -5,5
        x 2 {\displaystyle x_{2}} - μ = 5 - 10,5 = -5,5
        x 3 {\displaystyle x_{3}} - μ = 8 - 10,5 = -2,5
        x 4 {\displaystyle x_{4}} - μ = 12 - 10,5 = 1,5
        x 5 {\displaystyle x_{5}} - μ = 15 - 10,5 = 4,5
        x 6 {\displaystyle x_{6}} - μ = 18 - 10,5 = 7,5
    5. Возведите в квадрат каждый полученный результат. Значения разностей будут как положительными, так и отрицательными; если нанести эти значения на числовую прямую, то они будут лежать справа и слева от среднего значения совокупности. Это не годится для вычисления дисперсии, так как положительные и отрицательные числа компенсируют друг друга. Поэтому возведите в квадрат каждую разность, чтобы получить исключительно положительные числа.

      • В нашем примере:
        ( x i {\displaystyle x_{i}} - μ) 2 {\displaystyle ^{2}} для каждого значения совокупности (от i = 1 до i = 6):
        (-5,5) 2 {\displaystyle ^{2}} = 30,25
        (-5,5) 2 {\displaystyle ^{2}} , где x n {\displaystyle x_{n}} – последнее значение в генеральной совокупности.
      • Для вычисления среднего значения полученных результатов нужно найти их сумму и разделить ее на n:(( x 1 {\displaystyle x_{1}} - μ) 2 {\displaystyle ^{2}} + ( x 2 {\displaystyle x_{2}} - μ) 2 {\displaystyle ^{2}} + ... + ( x n {\displaystyle x_{n}} - μ) 2 {\displaystyle ^{2}} ) / n
      • Теперь запишем приведенное объяснение с использованием переменных: (∑( x i {\displaystyle x_{i}} - μ) 2 {\displaystyle ^{2}} ) / n и получим формулу для вычисления дисперсии совокупности.

Основными обобщающими показателями вариации в статистике являются дисперсии и среднее квадратическое отклонение.

Дисперсия  это средняя арифметическая квадратов отклонений каждого значения признака от общей средней. Дисперсия обычно называется средним квадратом отклонений и обозначается  2 . В зависимости от исходных данных дисперсия может вычисляться по средней арифметической простой или взвешенной:

 дисперсия невзвешенная (простая);

 дисперсия взвешенная.

Среднее квадратическое отклонение  это обобщающая характеристика абсолютных размеров вариации признака в совокупности. Выражается оно в тех же единицах измерения, что и признак (в метрах, тоннах, процентах, гектарах и т. д.).

Среднее квадратическое отклонение представляет собой корень квадратный из дисперсии и обозначается :

 среднее квадратическое отклонение невзвешенное;

 среднее квадратическое отклонение взвешенное.

Среднее квадратическое отклонение является мерилом надежности средней. Чем меньше среднее квадратическое отклонение, тем лучше средняя арифметическая отражает всю представляемую совокупность.

Вычислению среднего квадратического отклонения предшествует расчет дисперсии.

Порядок расчета дисперсии взвешенной следующий:

1) определяют среднюю арифметическую взвешенную:

2) рассчитывают отклонения вариантов от средней:

3) возводят в квадрат отклонение каждого варианта от средней:

4) умножают квадраты отклонений на веса (частоты):

5) суммируют полученные произведения:

6) полученную сумму делят на сумму весов:

Пример 2.1

Исчислим среднюю арифметическую взвешенную:

Значения отклонений от средней и их квадратов представлены в таблице. Определим дисперсию:

Среднее квадратическое отклонение будет равно:

Если исходные данные представлены в виде интервального ряда распределения , то сначала нужно определить дискретное значение признака, а затем применить изложенный метод.

Пример 2.2

Покажем расчет дисперсии для интервального ряда на данных о распределении посевной площади колхоза по урожайности пшеницы.

Средняя арифметическая равна:

Исчислим дисперсию:

6.3. Расчет дисперсии по формуле по индивидуальным данным

Техника вычисления дисперсии сложна, а при больших значениях вариантов и частот может быть громоздкой. Расчеты можно упростить, используя свойства дисперсии.

Дисперсия имеет следующие свойства.

1. Уменьшение или увеличение весов (частот) варьирующего признака в определенное число раз дисперсию не изменяет.

2. Уменьшение или увеличение каждого значения признака на одну и ту же постоянную величину А дисперсию не изменяет.

3. Уменьшение или увеличение каждого значения признака в какое-то число раз k соответственно уменьшает или увеличивает дисперсию в k 2 раз, а среднее квадратическое отклонение  в k раз.

4. Дисперсия признака относительно произвольной величины всегда больше дисперсии относительно средней арифметической на квадрат разности между средней и произвольной величинами:

Если А  0, то приходим к следующему равенству:

т. е. дисперсия признака равна разности между средним квадратом значений признака и квадратом средней.

Каждое свойство при расчете дисперсии может быть применено самостоятельно или в сочетании с другими.

Порядок расчета дисперсии простой:

1) определяют среднюю арифметическую :

2) возводят в квадрат среднюю арифметическую:

3) возводят в квадрат отклонение каждого варианта ряда:

х i 2 .

4) находят сумму квадратов вариантов:

5) делят сумму квадратов вариантов на их число, т. е. определяют средний квадрат:

6) определяют разность между средним квадратом признака и квадратом средней:

Пример 3.1 Имеются следующие данные о производительности труда рабочих:

Произведем следующие расчеты: