Коэффициент автокорреляции и его оценка. Смотреть страницы где упоминается термин коэффициент автокорреляции

После расчетов необходимо определить на каком лаге коэффициент будет максимальным (как правило, это первый лаг) и оценить его значимость. Предпосылкой для решения данной задачи является возможность проявления ошибки репрезентативности при анализе выборочных данных. Проверяется статистическая гипотеза: генеральный коэффициент автокорреляции равен нулю (следовательно, полученное значение выборочного коэффициента автокорреляции является следствием проявление случайной ошибки репрезентативности). Альтернативная гипотеза: генеральный коэффициент автокорреляции отличен от нуля (следовательно, полученное значение выборочного коэффициента автокорреляции может рассматриваться как оценка неизвестного генерального коэффициента автокорреляции по выборочным данным). Гипотезы проверяются через расчет t-критерия Стьюдента и сравнение расчетного значения с теоретическим.

Где r – коэффициент автокорреляции, σ r – стандартная ошибка коэффициента автокорреляции.

Ошибка рассчитывается следующим образом:

Где n – число уровней ряда

Теоретическое значение критерия Стьюдента при уровне значимости 0,05 и числе степеней свобод 12 равно 2,17

Расчетное значение критерия превосходит теоретическое (16,69 против 2,17), следовательно коэффициент автокорреляции на первом лаге признается значимым.

Наличие высокой автокорреляции в сочетании со значимостью коэффициента дает нам возможность рассмотреть регрессионную модель вида

(один из видов модели регрессии). Такая модель называется авторегрессией и позволяет решать задачу экстраполяции и прогнозирования.

Практика показывает, что часто в отклонениях от тренда сохраняется автокорреляция. Прежде чем приступить к расчету коэффициента корреляции по остаткам, необходимо проверить наличие в них автокорреляции. Проверяемая статистическая гипотеза (H0:) формулируется следующим образом:

H0: автокорреляция в анализируемом динамическом ряду отсутствует.

Наиболее распространенным статистическим критерием оценки автокорреляции в отклонениях от тренда, является критерий Дарбина – Уотсона (d0 ), статистика критерия определяется по следующей формуле:

,

где случайные отклонения от тренда .

Значение критерия изменяется в интервале от «0» до «4». При 0 < d < 2 - автокорреляция положительная,

если 2 < d < 4 – автокорреляция отрицательная.

Близость величины критерия к «2» говорит об отсутствии или несущественной автокорреляции. Оценки, получаемые по критерию «d», являются интервальными. Существуют таблицы распределения значений критерия Дарбина – Уотсона, составленные для различных уровней значимости. Таблицы составлены с учетом числа наблюдений в динамическом ряду и числа переменных в уравнении тренда.

По таблице в каждом конкретном случае находят нижнюю ( ) и верхнюю ( ) границы критерия. Результат сравнения расчетного значения с табличным интерпретируется следующим образом:

1. > , - H0 - принимается;

2. < , - H0 - отвергается;

3. , необходимо дальнейшее исследование (например, по более протяженному временному ряду).

Для проверки остатков на наличие автокорреляции можно просто рассчитать коэффициенты автокорреляции по остаткам. Данная задача решается аналогично задаче оценки автокорреляции динамических рядов. Единственное отличие: исходные данные в этом случае – это остатки по оптимальному тренду (берутся из отчетов)

Отсутствие автокорреляции в остатках определяется по величине коэффициента (меньше 0,5 – автокорреляция отсутствует). Решение данной задачи дополнительно подтверждает качество выбора тренда.

Кросс-корреляция динамических рядов – это корреляционная зависимость между динамическими рядами с заданным временным смещением (лагом). Внимание! Расчет коэффициентов кросс-корреляции проводится по остаткам с оптимальных трендов по динамическим рядам. Необходимость исключения трендовой составляющей динамического ряда объясняется тем, что при коррелировании уровней однонаправленных рядов значительно искажаются (завышаются результаты расчетов).

Остатки по двум динамическим рядам берутся из отчетов по оптимальным трендам.

Смещение (лаг) задается по аналогии с задачей автокорреляции.

Вторым отличием является необходимость рассмотрения прямой и обратной зависимости.

Последовательность задания исходных данных значения в данном случае не имеет, так как в любом случае рассматривается прямая зависимость – импорт к экспорту, и обратная – экспорт к импорту соответственно.

Третье отличие - на нулевом лаге смещение не задается

По полученным коэффициентам кросс-корреляции строится коррелограмма

По аналогии с решением задачи автокорреляции необходимо оценить значимость максимального коэффициента кросс-корреляции (как правило, это коэффициент на нулевом лаге).

Наличие высокой кросс-корреляции в сочетании со значимостью коэффициента дает нам возможность рассмотреть регрессионную модель вида

(в качестве модели регрессии выбирается оптимальный тренд. В данном случае линейный). Такая модель называется регрессионной моделью с включением фактора времени) и позволяет решать задачу экстраполяции и прогнозирования.

Уровни второго динамического ряда с заданным смещением на величину лага

1. Он строится по аналогии с линейным коэффициентом корреляции и таким образом характеризует тесноту только линейной связи текущего и предыдущего уровней ряда. Поэтому по коэффициенту автокорреляции можно судить о наличии линейной (или близкой к линейной) тенденции.

2. По знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или убывающей тенденции в уровнях ряда. Большинство временных рядов экономических данных содержат положительную автокорреляцию уровней, однако при этом могут иметь убывающую тенденцию.

Последовательность коэффициентов автокорреляции уровней первого, второго и т.д. порядков называют автокорреляционной функцией временного ряда. График зависимости ее значений от величины лага (порядка коэффициента автокорреляции) называется коррелограммой .

Анализ автокорреляционной функции и коррелограммы позволяет определить лаг, при котором автокорреляция наиболее высокая, а следовательно, и лаг, при котором связь между текущим и предыдущими уровнями ряда наиболее тесная, т.е. при помощи анализа автокорреляционной функции и коррелограммы можно выявить структуру ряда.

Если наиболее высоким оказался коэффициент автокорреляции первого порядка, исследуемый ряд содержит только тенденцию. Если наиболее высоким оказался коэффициент автокорреляции порядка 2, то ряд содержит циклические колебания с периодичностью в 2 момента времени. Если ни один из коэффициентов автокорреляции не является значимым, можно сделать одно из двух предположений относительно структуры этого ряда: либо ряд не содержит тенденции и циклических колебаний, либо ряд содержит сильную нелинейную тенденцию, для выявления которой нужно провести дополнительный анализ. Поэтому коэффициент автокорреляции уровней и автокорреляционную функцию целесообразно использовать для выявления во временном ряде наличия или отсутствия трендовой компоненты и циклической (сезонной) компоненты.

Рассмотрим пример . Пусть имеются некоторые условные данные об общем количестве правонарушений на таможне одного из субъектов РФ (например, Республики Татарстан).

Таблица 4.1

Год Квартал Количество возбужденных дел,
I
II
III
IV
I
II
III
IV
I
II
III
IV
I
II
III
IV

Построим поле корреляции:

Уже исходя из графика видно, что значения образуют пилообразную фигуру. Рассчитаем несколько последовательных коэффициентов автокорреляции. Для этого составляем первую вспомогательную таблицу.

Таблица 4.2

-328,33 -288,13 94601,72 107800,59 83018,90
169,67 -292,13 -49565,70 28787,91 85339,94
315,67 205,87 64986,98 99647,55 42382,46
-342,33 351,87 -120455,66 117189,83 123812,50
-228,33 -306,13 69898,66 52134,59 93715,58
292,67 -192,13 -56230,69 85655,73 36913,94
320,67 328,87 105458,74 102829,25 108155,48
-309,33 356,87 -110390,60 95685,05 127356,20
-344,33 -273,13 94046,85 118563,15 74600,00
292,67 -308,13 -90180,41 85655,73 94944,10
205,67 328,87 67638,69 42300,15 108155,48
-238,33 241,87 -57644,88 56801,19 58501,10
-245,33 -202,13 49588,55 60186,81 40856,54
220,67 -209,13 -46148,72 48695,25 43735,36
227,67 256,87 58481,59 51833,63 65982,20
Сумма 9,05 0,05 74085,16 1153766,39 1187469,73
Среднее значение 699,33 663,13

Следует заметить, что среднее значение получается путем деления не на 16, а на 15, т.к. у нас теперь на одно наблюдение меньше.

Теперь вычисляем коэффициент автокорреляции первого порядка по формуле (4.1):

Составляем вспомогательную таблицу для расчета коэффициента автокорреляции второго порядка.

Таблица 4.3

145,57 -269,79 -39273,33 21190,62 72786,64
291,57 -273,79 -79828,95 85013,06 74960,96
-366,43 224,21 -82157,27 134270,94 50270,12
-252,43 370,21 -93452,11 63720,90 137055,44
268,57 -287,79 -77291,76 72129,84 82823,08
296,57 -173,79 -51540,90 87953,76 30202,96
-333,43 347,21 -115770,23 111175,56 120554,78
-368,43 375,21 -138238,62 135740,66 140782,54
268,57 -254,79 -68428,95 72129,84 64917,94
181,57 -289,79 -52617,17 32967,66 83978,24
-262,43 347,21 -91118,32 68869,50 120554,78
-269,43 260,21 -70108,38 72592,52 67709,24
196,57 -183,79 -36127,60 38639,76 33778,76
203,57 -190,79 -38839,12 41440,74 36400,82
Сумма -0,02 -0,06 -1034792,71 1037835,43 1116776,36
Среднее значение 723,43 644,79

Для выявления структуры ряда (т. е. состава компонент) строят автокорреляционную функцию.

Автокорреляция уровней ряда – корреляционная между последовательными уровнями одного и того же ряда динамики (сдвинутыми на определенный промежуток времени L – лаг). То есть связь между рядом: Х 1 , Х 2 , ... Х n-L и рядом Х 1+L , Х 2+L , ... Х n , где L – положительное целое число. Автокорреляция может быть измерена коэффициентом автокорреляции.

Лаг (сдвиг во времени) определяет порядок коэффициента автокорреляции. Если L = 1, то имеем коэффициент автокорреляции 1-го порядка r t,t-1 . Если L = 2, то коэффициент автокорреляции 2-го порядка r t,t-2 и т.д.

Следует учитывать, что с увеличением лага на единицу число пар значений, по которым рассчитывается коэффициент автокорреляции, уменьшается на 1. Поэтому обычно рекомендуют максимальный порядок коэффициента автокорреляции, равный n/4.

Рассчитав несколько коэффициентов автокорреляции, можно определить лаг (I), при котором автокорреляция (r t,t-L) наиболее высокая, выявив тем самым структуру временного ряда .

Если наиболее высоким оказывается значение r t,t-1 , то исследуемый ряд додержит только тенденцию. Если наиболее высоким оказался r t,t-L , то ряд содержит (помимо тенденции) колебания периодом L.

Если ни один из r t,t-L (l=1;L) не является значимым, можно сделать одно из двух предположений:

Либо ряд не содержит тенденции и циклических колебаний, а его уровень определяется только случайной компонентой;

Либо ряд содержит сильную нелинейную тенденцию, для выявления которой нужно провести дополнительный анализ.

Последовательность коэффициентов автокорреляции 1, 2 и т.д. порядков называют автокорреляционной функцией временного ряда . График зависимости значений коэффициентов автокорреляции от величины лага (порядка коэффициента автокорреляции) называют коррелограммой .

Чтобы найти коэффициент корреляции 1-го порядка, нужно найти корреляцию между рядами (расчет производится не по 14, а по 13 парам наблюдений):

Два важных свойства коэффициента автокорреляции:



1) Он строится по аналогии с линейным коэффициентом корреляции и таким образом характеризует тесноту только линейной связи текущего и предыдущего уровней ряда. По-этому по коэффициенту автокорреляции можно судить о наличии линейной (или близкой к линейной) тенденции. Для некоторых временных рядов, имеющих сильную нелинейную тенденцию (например, параболу второго порядка или экспоненту), коэффициент автокорреляции уровней исходного ряда может приближаться к нулю.

2) По знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или убывающей тенденции в уровнях ряда. Большинство временных рядов экономических данных содержит положительную автокорреляцию уровней, однако при этом могут иметь убывающую тенденцию.

Сдвигаем исходный ряд на 1 уровней. Получаем следующую таблицу:

y t y t - 1
3.18 4.31
4.31 5.66
5.66 6.89
6.89 9.47
9.47 12.34
12.34 14.36
14.36 18.08
18.08 20.63
20.63 24.3
24.3 30.2
30.2 37.04
37.04 43.81
43.81 48.32

Расчет коэффициента автокорреляции 1-го порядка .

Выборочные средние.

Выборочные дисперсии:

Коэффициент автокорреляции

Линейный коэффициент автокорреляции r t,t-1:

Линейный коэффициент корреляции принимает значения от –1 до +1.

Связи между признаками могут быть слабыми и сильными (тесными). Их критерии оцениваются по шкале Чеддока:

0.1 < r t,t-1 < 0.3: слабая;

0.3 < r t,t-1 < 0.5: умеренная;

0.5 < r t,t-1 < 0.7: заметная;

0.7 < r t,t-1 < 0.9: высокая;

0.9 < r t,t-1 < 1: весьма высокая;

В нашем примере связь между рядами - весьма высокая и прямая.


x y x 2 y 2 x y
3.18 4.31 10.11 18.58 13.71
4.31 5.66 18.58 32.04 24.39
5.66 6.89 32.04 47.47
6.89 9.47 47.47 89.68 65.25
9.47 12.34 89.68 152.28 116.86
12.34 14.36 152.28 206.21 177.2
14.36 18.08 206.21 326.89 259.63
18.08 20.63 326.89 425.6 372.99
20.63 24.3 425.6 590.49 501.31
24.3 30.2 590.49 912.04 733.86
30.2 37.04 912.04 1371.96 1118.61
37.04 43.81 1371.96 1919.32 1622.72
43.81 48.32 1919.32 2334.82 2116.9
230.27 275.41 6102.65 8427.36 7162.43

Сдвигаем исходный ряд на 2 уровней. Получаем следующую таблицу:

y t y t - 2
3.18 5.66
4.31 6.89
5.66 9.47
6.89 12.34
9.47 14.36
12.34 18.08
14.36 20.63
18.08 24.3
20.63 30.2
24.3 37.04
30.2 43.81
37.04 48.32

Расчет коэффициента автокорреляции 2-го порядка .

Выборочные средние.

Выборочные дисперсии:

Среднеквадратическое отклонение

Коэффициент автокорреляции

Линейный коэффициент автокорреляции r t,t-2:

x y x 2 y 2 x y
3.18 5.66 10.11 32.04
4.31 6.89 18.58 47.47 29.7
5.66 9.47 32.04 89.68 53.6
6.89 12.34 47.47 152.28 85.02
9.47 14.36 89.68 206.21 135.99
12.34 18.08 152.28 326.89 223.11
14.36 20.63 206.21 425.6 296.25
18.08 24.3 326.89 590.49 439.34
20.63 30.2 425.6 912.04 623.03
24.3 37.04 590.49 1371.96 900.07
30.2 43.81 912.04 1919.32 1323.06
37.04 48.32 1371.96 2334.82 1789.77
186.46 271.1 4183.34 8408.79 5916.94

Сдвигаем исходный ряд на 3 уровней. Получаем следующую таблицу:

y t y t - 3
3.18 6.89
4.31 9.47
5.66 12.34
6.89 14.36
9.47 18.08
12.34 20.63
14.36 24.3
18.08 30.2
20.63 37.04
24.3 43.81
30.2 48.32

Расчет коэффициента автокорреляции 3-го порядка .

Выборочные средние.

Выборочные дисперсии:

Среднеквадратическое отклонение

Коэффициент автокорреляции

Линейный коэффициент автокорреляции r t,t-3:

x y x 2 y 2 x y
3.18 6.89 10.11 47.47 21.91
4.31 9.47 18.58 89.68 40.82
5.66 12.34 32.04 152.28 69.84
6.89 14.36 47.47 206.21 98.94
9.47 18.08 89.68 326.89 171.22
12.34 20.63 152.28 425.6 254.57
14.36 24.3 206.21 590.49 348.95
18.08 30.2 326.89 912.04 546.02
20.63 37.04 425.6 1371.96 764.14
24.3 43.81 590.49 1919.32 1064.58
30.2 48.32 912.04 2334.82 1459.26
149.42 265.44 2811.38 8376.75 4840.25

Сдвигаем исходный ряд на 4 уровней. Получаем следующую таблицу:

y t y t - 4
3.18 9.47
4.31 12.34
5.66 14.36
6.89 18.08
9.47 20.63
12.34 24.3
14.36 30.2
18.08 37.04
20.63 43.81
24.3 48.32

Расчет коэффициента автокорреляции 4-го порядка .

Выборочные средние.

Выборочные дисперсии:

Среднеквадратическое отклонение

Коэффициент автокорреляции

Линейный коэффициент автокорреляции r t,t-4:

x y x 2 y 2 x y
3.18 9.47 10.11 89.68 30.11
4.31 12.34 18.58 152.28 53.19
5.66 14.36 32.04 206.21 81.28
6.89 18.08 47.47 326.89 124.57
9.47 20.63 89.68 425.6 195.37
12.34 24.3 152.28 590.49 299.86
14.36 30.2 206.21 912.04 433.67
18.08 37.04 326.89 1371.96 669.68
20.63 43.81 425.6 1919.32 903.8
24.3 48.32 590.49 2334.82 1174.18
119.22 258.55 1899.34 8329.28 3965.71

Вывод : в данном ряду динамики имеется тенденция (r t,t-1 = 0.997 → 1).

Решение было получено и оформлено с помощью сервиса:

Автокорреляция

Вместе с этой задачей решают также:

Тест Дарбина-Уотсона

Выявление тренда методом аналитического выравнивания

Уравнение нелинейной регрессии

Показатели динамики: цепные и базисные

Анализ сезонных колебаний

Аддитивная модель временного ряда

Мультипликативная модель временного ряда

Онлайн сдача дистанционных тестов

Copyright © Semestr.RU


Список литературы

1. Практикум по эконометрике: Учебн. пособие/ Под ред. И.И. Елисеевой. – М.: Финансы и статистика, 2006. – 344 с.

2. Эконометрика: Учебник/ Под ред. И.И. Елисеевой. – М.: Финансы и статистика, 2006. – 576 с.

3. Эконометрика: Учебно-методическое пособие/ Шалабанов А.К., Роганов Д.А. – Казань: ТИСБИ, 2004. – 198 с.

Введение

Периодическая зависимость играть роль общего типа компонентов временного ряда. Не сложно заметить, что каждое наблюдение очень похоже на пограничное; к тому же имеется повторяющаяся периодическая составляющая, что означает, что каждое наблюдение также похоже на наблюдение, имевшееся в том же самое время период назад.

В общей сложности, периодическая зависимость может быть формально определена как корреляционная зависимость порядка n между каждым i-м элементом ряда и (i-n) - м элементом. Ее можно измерять с помощью автокорреляции (т.е. корреляции между самими членами ряда); n обычно называют лагом (иногда используют эквивалентные термины: сдвиг, запаздывание). Если оплошность измерения не слишком большая, то периодичность можно определить визуально, рассматривая поведение членов ряда через каждые n временных единиц.

Периодические составляющие временного ряда могут быть отысканы с помощью коррелограммы. Коррелограмма (автокоррелограмма) представляет численно и графически автокорреляционную функцию. Другими словами, коэффициенты автокорреляции для последовательности шагов из определенного диапазона. На коррелограмме просто отмечается диапазон в размере двух стандартных ошибок на каждом лаге, однако обычно величина автокорреляции более интересна, чем ее надежность, потому что интерес в основном представляют очень сильные автокорреляции .

При изучении коррелограмм следует знать следующее: автокорреляции последовательных лагов формально зависимы между собой.

Рассмотрим пример. Если первый член ряда тесно связан со вторым, а второй с третьим, то первый элемент должен также каким-то образом зависеть от третьего и т.д. Это приводит к тому, что периодическая зависимость может существенно измениться после удаления автокорреляций первого порядка, (т.е. после взятия разности с лагом 1).

Цель работы:

1. Дать основные теоретические сведения

2. Дать примеры расчета АКФ

Теоретические сведения

Коэффициент автокорреляции и его оценка

Для совершенной характеристики случайного движения недостаточно его математического ожидания и дисперсии. Вероятность того, что на определенном месте возникнут те или иные конкретные значения зависит от того, какие роли случайная величина получила раньше или будет получать позже.

Другими словами, существует поле рассеяния пар значений x(t), x (t+n) временного ряда, где n - постоянный интервал или задержка, которая характеризует зависимость последующих реализаций процесса от предыдущих. Теснота этой взаимосвязи оценивается коэффициентами автоковариации -

g (n) = E[(x(t) - m) (x (t + n) - m)] -

и автокорреляции

r (n) = E[(x(t) - m) (x (t + n) - m)] / D,

где m и D - математическое ожидание и дисперсия случайного процесса. Для расчета автоковариации и автокорреляции реальных процессов необходима информация о совместном распределении вероятностей уровней ряда p (x(t 1), x(t 2)).

r (n) = g (n) /g (0),

откуда вытекает, что r (0) = 1. В тех же условиях стационарности множитель корреляции r (n) между двумя значениями временного ряда зависит лишь от величины временного интервала n и не зависит от самих моментов наблюдений t. Коэффициент автокорреляции может быть оценен и для нестационарного ряда, но в этом случае его вероятностная интерпретация теряется.

В статистике имеется несколько выборочных оценок теоретических значений автокорреляции r (n) процесса по конечному временному ряду из n наблюдений. Наиболее популярной оценкой является нециклический коэффициент автокорреляции с задержкой n

Главным из различных коэффициентов автокорреляции является первый - r 1 , измеряющий тесноту связи между уровнями x(1), x(2),…, x (n -1) и x(2), x(3),…, x(n).

Распределение коэффициентов автокорреляции неизвестно, поэтому для оценки их правдивости иногда используют непараметрическую теорию Андерсона (1976), предложившего статистику

t = r 1 (n -1) 0.5 ,

которая при достаточно большой выборке распределена нормально, имеет нулевую среднюю и дисперсию, равную единице (Тинтнер, 1965).

При наличии во временном ряде тенденции и циклических колебаний значения каждого последующего уровня ряда зависят от предыдущих. Корреляционную зависимость между последовательными уровнями временного ряда называют Автокорреляцией уровней ряда .

Количественно ее можно измерить с помощью линейного коэффициента корреляции между уровнями исходного временного ряда и уровнями этого ряда, сдвинутыми на несколько шагов во времени.

Формула для расчета коэффициента автокорреляции имеет вид:

(4.1)

.

Эту величину называют Коэффициентом автокорреляции уровней ряда первого порядка , так как он измеряет зависимость между соседними уровнями ряда и .

Аналогично можно определить коэффициенты автокорреляции второго и более высоких порядков. Так, коэффициент автокорреляции второго порядка характеризует тесноту связи между уровнями и и определяется по формуле:

(4.2)

Число периодов, по которым рассчитывается коэффициент автокорреляции, называют Лагом . С увеличением лага число пар значений, по которым рассчитывается коэффициент автокорреляции, уменьшается. Считается целесообразным для обеспечения статистической достоверности коэффициентов автокорреляции использовать правило – максимальный лаг должен быть не больше .

Свойства коэффициента автокорреляции.

1. Он строится по аналогии с линейным коэффициентом корреляции и также характеризует тесноту только линейной связи текущего и предыдущего уровней ряда. Поэтому по коэффициенту автокорреляции можно судить о наличии линейной (или близкой к линейной) тенденции. Для некоторых временных рядов, имеющих сильную нелинейную тенденцию (например, параболу второго порядка или экспоненту), коэффициент автокорреляции уровней исходного ряда может приближаться к нулю.

2. По знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или убывающей тенденции в уровнях ряда. Большинство временных рядов экономических данных содержат положительную автокорреляцию уровней, однако при этом могут иметь убывающую тенденцию.

Последовательность коэффициентов автокорреляции уровней первого, второго и т. д. порядков называют Автокорреляционной функцией временного ряда. График зависимости ее значений от величины лага (порядка коэффициента автокорреляции) называется Коррелограммой .

Анализ автокорреляционной функции и коррелограммы позволяет определить лаг, при котором автокорреляция наиболее высокая, а, следовательно, и лаг, при котором связь между текущим и предыдущими уровнями ряда наиболее тесная, т. е. при помощи анализа автокорреляционной функции и коррелограммы можно выявить структуру ряда.

Если наиболее высоким оказался коэффициент автокорреляции первого порядка, исследуемый ряд содержит только тенденцию. Если наиболее высоким оказался коэффициент автокорреляции порядка , то ряд содержит циклические колебания с периодичностью в моментов времени. Если ни один из коэффициентов автокорреляции не является значимым, можно сделать одно из двух предположений относительно структуры этого ряда: либо ряд не содержит тенденции и циклических колебаний, либо ряд содержит сильную нелинейную тенденцию, для выявления которой нужно провести дополнительный анализ. Поэтому коэффициент автокорреляции уровней и автокорреляционную функцию целесообразно использовать для выявления во временном ряде наличия или отсутствия трендовой компоненты и циклической (сезонной) компоненты.

Рассмотрим Пример . Пусть имеются некоторые условные данные об общем объеме потребления электроэнергии на одном из предприятий города.

Таблица 4.1

Построим поле корреляции:

Уже исходя из графика видно, что значения Y образуют пилообразную фигуру.

Рассчитаем несколько последовательных коэффициентов автокорреляции. Для этого составляем первую вспомогательную таблицу (см. табл. 4.2).

Следует заметить, что среднее значение получается путем деления не на 16, а на 15, т. к. у нас теперь на одно наблюдение меньше.

Теперь вычисляем коэффициент автокорреляции первого порядка по формуле (4.1):

.

Составляем вспомогательную таблицу 4.3 для расчета коэффициента автокорреляции второго порядка.

Следовательно

Аналогично находим коэффициенты автокорреляции более высоких порядков, а все полученные значения заносим в сводную таблицу 4.4.

Таблица 4.2

Значение

Таблица 4.3