Призма обрушения котлована. Давление грунтов на сооружения. Устойчивость оснований сооружений. Крутые траншеи и полутраншеи

Площадки, ограничивающие не рабочие уступы, называются – бермами. Различают предохранительные бермы, бермы механической очистки и транспортные бермы. Предохранительные бермы равны 1/3 расстояния по высоте между смежными бермами. Бермы механической очистки обычно больше либо равны 8 метров (для заезда бульдозеров для очистки осыпанной породы).

Транспортные бермы – это площадки, оставляемые на нерабочем борту карьера для передвижения транспортных средств. Предохранительные бермы – это площадки, оставляемы на нерабочем борту карьера для повышения его устойчивости и задержания осыпающихся кусков породы. Обычно они слегка наклонены в сторону вышележащего откоса уступа. Бермы должны оставляться не более чем через 3 уступа. Призма обрушения – это неустойчивая часть уступа между откосом уступа и плоскостью естественного обрушения и ограниченная верхней площадкой. Ширина основания призмы обрушения (Б) называется бермой безопасности и определяется по формуле: .

Порядок развития открытых горных работ

Порядок развития открытых горных работ в пределах карьерного поля не может устанавливаться произвольно. Он зависит от типа разрабатываемого месторождения, рельефа поверхности, формы залежи, положения залежи относительно господствующего уровня поверхности, угла её падения, мощности, строения, распределения по качеству полезных ископаемых и типов вскрышных пород. Дальнейшим следствием является выбор вида открытых горных разработок: поверхностного, глубинного, нагорного, нагорно-глубинного или подгорного. Дальнейшим нашим действием является принципиальное предварительное решение о карьерном поле – его возможных глубине, размерах по дну и поверхности, углах откосов бортов, а так же общих запасов гонной массы и полезных ископаемых в частности. Устанавливаются так же возможные места расположение потребителей полезных ископаемых, отвалов, хвосто-хранилищ и их ориентировочные вместимости, что позволяет наметить возможные направления и пути перемещения карьерных грузов. На основании вышеуказанных рассуждений устанавливаются возможные размеры карьерного поля, его местоположении в увязке с рельефом поверхности, а так же примерные контуры горного отвода будущего предприятия. Только после этого с учётом планируемой мощности карьера приступают к решению задачи о порядке развития горных работ в пределах карьерного поля. Для ускоренного ввода карьера в эксплуатацию и сокращения уровня капитальных затрат горные работы начинают вести там где залежь полезного ископаемого находится ближе к поверхности. Главная цель открытых горных работ – добыча из недр полезных ископаемых с одновременной выемкой большого объёма покрывающей и вмещающей залежь вскрышных пород достигается при чёткой и высокоэкономичной организации ведущего и наиболее дорого процесса открытых горных работ – перемещение горной массы из забоев в пункты приёма на складах и отвалах (до 40%). Эффективность перемещения карьерных грузов достигается организацией устойчиво действующих потоков полезных ископаемых и вскрышных пород применительно к которым решаются вопросы вскрытия рабочих горизонтов карьерного поля, а так же и мощностей используемых транспортных средств. Технические решения при открытой разработке месторождений и экономические её результаты определяются соотношениями объёмов вскрышных и добычных работ в целом и по периодам деятельности карьера. Количественная оценка этих соотношений производится с применением коэффициента вскрыши.

Крутые траншеи и полутраншеи

По углу наклона капитальные траншеи делятся на крутые. Крутые траншеи глубинного вида обычно имеют внутреннее заложение. По расположению относительно борта карьера они подразделяются на поперечные и диагональные. Поперечные крутые траншеи применяются в тех случаях когда общий угол откоса борта карьера меньше. Диагональные крутые траншеи обычно применяются для размещения конвейерных и автомобильных подъёмников. Крутые траншеи характерны при оставлении на нерабочем борту транспортных берм (съездов).

Временные съезды

Основное отличие временных съездов от скользящих – следующее:

1. Временные съезды не перемещаются (не скользят) при попеременной отработке верхнего и нижнего под уступов в пределов съездов;

2. Строительство временных съездов как правило (в скальных и полу скальных породах) включает обуривание и взрывание породного блока в пределах съезда на высоту уступа и проходку съезда чаще всего с перемещением взорванной породы пол откос экскаватором или бульдозером;

3. Отработка старых съездов осуществляется путём выемки взорванной породы с погрузкой в автомобильный транспорт;

Трасса временных съездов простая или петлевая, коэффициент удлинения простой временной трассы зависит в основном от ширины рабочей площадки. Автомобильные съезды могу примыкать к горизонтам на руководящем уклоне, смягчённом уклоне (с пологой вставкой) и на площадке. Примыкание на руководящем уклоне характерно для съездов на верхних, уже отработанных горизонтах при сквозном движении автомобилей по этим съездам.

Ширина по верху призмы обрушения откоса может быть определена с помощью рис. 14.11, составленного, как и предыдущие графики, на основании решений В. В. Соколовского и таблиц института Фундаментпроект .

Моргулис М.Л., Иванова Л.И. Таблицы и графики для построения контуров откосов и определения напряжений в теле грунтового массива

Соколовский В.В. Статика сыпучей среды

Рис. 14.10. К определению максимально допустимого угла наклона плоского откоса

ТАБЛИЦА 14.2. КООРДИНАТЫ ПРЕДЕЛЬНОГО ОТКОСА

y " Значения –x " при φ" , град х , м V , м
10 15 12
5,0 5,0 3,5 5,0 5,0 – 3,5

5
2 = 4,4 7,35 7,5
7,5 11,5 7,5 11,5 11,5 – 7,5

5
2 = 9,9 14,85 11,25
10,0 19,0 12,5 19,0 19,0 – 12,5

5
2 = 16,4 24,6 15,0
12,5 27,0 18,0 27,0 27,0 – 18,0

5
2 = 23,4 35,1 18,75
15,0 37,5 24,0 37,5 37,5 – 24,0

5
2 = 32,1 48,15 22,5
17,5 48,5 30,5 58,0 58,0 – 37,5

5
2 = 41,3 61,95 26,25
20,0 58,0 37,5 58,0 58,0 – 37,5

5
2 = 49,8 74,7 30,0
24,2 75 50,0 75,0 75,0 – 50,0

5
2 = 65,0 97,5 36,3


Рис. 14.11. К определению величины В " 0

По рис. 14.11 в зависимости от значений φ" и H " 0 – h 0 , где

H " 0 = H 0 γ I /c ",

определяется безразмерная величина В " 0 , соответствующая ширине призмы обрушения на глубине h " 0 , по которой вычисляется ширина призмы обрушения B 0 на поверхности грунта

B 0 = (B " 0 – h " 0 ctgθ 0)c"/γ I .


Рис. 14.12. К примеру 2

1 - контур запроектированного откоса; 2 - контур предельного откоса

Ширина призмы обрушения используется при аппроксимации криволинейного контура предельного откоса ломаным контуром: ширину берм и площадок следует принимать не менее ширины призмы обрушения уступа.

Пример 14.2. Требуется запроектировать откос насыпи высотой 40 м в глинистых грунтах с характеристиками φ" = 12°, c " = 30 кПа, γ I = 20 кН/м 3 , принимая высоту уступа 10 м.

Решение . При проектировании высоких откосов насыпи с разбивкой их на уступы расчет рекомендуется начинать с построения контура предельного откоса (который при наличии насыпи является наиболее экономичным), а затем аппроксимировать его уступчатым откосом.

По рис. 14.9 для φ" = 12° находим h " 0 = 2,45. Тогда предельная высота вертикального откоса при c "/γ I = 30/20 = 1,5 м по формуле (14.2) будет: h 0 = 2,45 · 1,5 = 3,7 м.

Для построения контура откоса на глубине, превосходящей 3,7 м, задаемся значениями у " на кривых для φ" = 10° и φ" = 15° (см. рис. 14 8), находим соответствующие этим значениям у " значения х " и вычисляем по интерполяции промежуточные значения х " , а затем - х и y для φ" = 12° до глубины 40 м, т.е. до значения у " = (40 – 3,7)/1,5 = 24,2.

Вычисления сводим в табл. 14.2. Построенный по результатам вычислений контур предельного откоса показан на рис. 14.12.

Затем по рис. 14.10 при c "/(γ I H 0) = 30/(20 · 10) = 0,15 определяем предельную крутизну верхнего уступа: θ 0 = 61° при φ" = 10°, θ 0 = 70° при φ" = 15° и по интерполяции находим θ 0 = 61° + (70 – 61)2/5 = 64,6° при φ" = 12°.

Такая крутизна откоса уступа больше допускаемой по табл. 14.1 (63°), поэтому принимаем заложение откоса верхнего уступа 1:0,5. Лежащие ниже уступы, учитывая большую высоту откоса, необходимо принимать более пологими, очерчивая предельный контур, как это показано на рис. 14.12.

Для назначения размера бермы для уступа высотой 10 м сначала по рис. 14.11 при H " 0 – h " 0 = 10/1,5 – 2,45 = 4,22 находим: B " 0 = 3,7 при φ" = 10°, B " 0 = 2,5 при φ" = 15°и по интерполяции вычисляем: B " 0 = 3,7 – (3,7 – 2,5)2/5 = 3,22 при φ" = 12°. Затем по формуле (14.7) определяем минимальную ширину призмы обрушения:

B 0 = (3,22 – 2,45 ctg 63°)1,5 = 2,95 м.

Учитывая большую высоту откоса, принимаем В 0 = 4 м. Располагаем бермы через 10 м по высоте откоса по 2 м в обе стороны от контура предельного откоса и строим уступчатый плоский откос, соединяя конечную точку предыдущей бермы и начальную точку последующей. Заложение порученных уступов откоса: четвертого 1:3,375, принимаем 1:3,5; третьего 1:2,9, принимаем 1:3,0; второго 1:1,73, принимаем 1:1,75; заложение верхнего уступа принято по расчету 1:0,5. На рис. 14.12 показано очертание предельного контура и полученный уступчатый профиль откоса.

При решении практических задач из общего напряженного состояния массива грунта обычно выделяют в отдельную задачу определение усилий, передающихся грунтом на вертикальные или наклонные грани сооружения. Типичными конструкциями, для которых существенно важна оценка давления грунта Е, являются различного рода подпорные стены (рис. 6.1, а), стены подвальных помещений (рис. 6.1, б), устои мостов (рис. 6.1, в), гидротехнические сооружения (рис. 6.1, г), ограждения котлованов, перемычки и др.

Рис. 6.1. Давление грунта на различные сооружения.

1 - область («призма») обрушения грунта;

2 - область («призма») выпора грунта.

Как убедительно показали эксперименты и натурные наблюдения, давление грунта Е на сооружение существенно зависит от направления, величины и характера смещений вертикальных или наклонных контактных граней сооружения, по которым происходит взаимодействие с грунтовым массивом.

Рассмотрим влияние смещений на примере простейшей подпорной стены (рис. 6.2). В случае уверенно неподвижной стены (рис. 6.2, в) деформации грунта происходят без бокового расширения и поэтому при действии только собственного веса грунта можно принять σ x = ξσ z = ξγ гр z, где ξ - коэффициент бокового давления грунта (см. раздел 3.3, ф-ла 3.23). При этом суммарное боковое давление на единицу длины стены (в направлении, перпендикулярном плоскости хz) определится как E 0 = ξγ гр h 2 /2. Давление E 0 принято называть давлением покоя , поскольку величина коэффициента ξ в E 0 отвечает случаю отсутствия боковых смещений грунта.

Рис. 6.2. Зависимость давления грунта от величины и направления

горизонтального смещения стенки или сооружения.

Под действием давления грунта могут возникать смещения U сооружения в сторону от грунта засыпки (на рис. 6.2 приняты со знаком минус, т.е. U < 0). При этом в массиве грунта образуются поверхности скольжения, и постепенно формируется область обрушения, которую называют призмой (клином) обрушения (1 на рис. 6.2, б). Возникающие в смещающемся грунте силы сопротивления сдвигу приводят к уменьшению давления грунта, которое при величине смещения U a сооружения, определяемой формированием призмы обрушения, достигает предельного (минимального) значения, называемого активным давлением или распором Е a (рис. 6.2, а). Как показали эксперименты, для достижения Е a необходимы весьма незначительные величины смещения стенки от грунта (U a ≥ (0,0002 … 0,002)h, где h - высота стенки в м).

Нередко в результате действия внешних сил перемещения сооружения происходят в сторону грунта. Это может проявляться в сооружениях, воспринимающих большие горизонтальные нагрузки, например, в случае устоя арочного моста (рис. 6.1, в), гидротехнических сооружений (рис. 6.1, г) в результате давления воды верхнего бьефа.

При перемещении U стены на грунт (рис. 6.2, г) постепенно формируется призма выпора грунта (2 на рис. 6.2, г) и возникают силы сопротивления сдвигу, препятствующие выпору. В результате по грани стены возникает все увеличивающаяся реакция грунта, которая в момент формирования призмы выпора достигает максимальной величины, называемой пассивным давлением или отпором грунта Е п (рис. 6.2, а). Для развития и создания пассивного давления грунта требуется большое перемещение U п стены на грунт, значительно (на 1 … 2 порядка) превышающее U a . Это вызвано, в частности, уплотнением грунта за стенкой. При действии внешней нагрузки, принудительно смещающей стенку на грунт, грунт вначале уплотняется и только затем начинает формироваться поверхность скольжения - выпора грунта .

Таким образом, под активным давлением понимается предельное давление грунта засыпки на стенку (сооружение) в условиях, когда стенка смещается от засыпки (за счет деформации основания от давления засыпки) и грунт за стенкой перешел в состояние предельного равновесия. Пассивное давление - это предельное значение реакции (реактивного давления) при принудительном смещении стенки на грунт в условиях, когда грунт за стенкой переходит в состояние предельного равновесия (в пределах призмы выпора). Подчеркнем, что по отношению к сооружению активное давление - это активная, а пассивное давление - реактивная сила. Активное давление грунта может явиться одной из причин потери устойчивости сооружения или стенки (сдвига, крена и опрокидывания).

Для определения активного и пассивного давлений на массивные сооружения большой жесткости в проектной практике применяются обычно приближенные решения, основанные на представлениях теории предельного равновесия (ТПР – см. раздел 3.1), рассматриваемые ниже.

sliding wedge ) - неустойчивая часть массива уступа со стороны его откоса, заключённая между рабочим и устойчивым углами откоса уступа .

Понятие призмы обрушения используется при расчётах откосов , устойчивых к обрушению и предотвращения оползней .

См. также

Напишите отзыв о статье "Призма обрушения"

Примечания

Литература

Ссылки

  • // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). - СПб. , 1890-1907.

Отрывок, характеризующий Призма обрушения

После того как гусары въехали в деревню и Ростов прошел к княжне, в толпе произошло замешательство и раздор. Некоторые мужики стали говорить, что эти приехавшие были русские и как бы они не обиделись тем, что не выпускают барышню. Дрон был того же мнения; но как только он выразил его, так Карп и другие мужики напали на бывшего старосту.
– Ты мир то поедом ел сколько годов? – кричал на него Карп. – Тебе все одно! Ты кубышку выроешь, увезешь, тебе что, разори наши дома али нет?
– Сказано, порядок чтоб был, не езди никто из домов, чтобы ни синь пороха не вывозить, – вот она и вся! – кричал другой.
– Очередь на твоего сына была, а ты небось гладуха своего пожалел, – вдруг быстро заговорил маленький старичок, нападая на Дрона, – а моего Ваньку забрил. Эх, умирать будем!
– То то умирать будем!
– Я от миру не отказчик, – говорил Дрон.
– То то не отказчик, брюхо отрастил!..
Два длинные мужика говорили свое. Как только Ростов, сопутствуемый Ильиным, Лаврушкой и Алпатычем, подошел к толпе, Карп, заложив пальцы за кушак, слегка улыбаясь, вышел вперед. Дрон, напротив, зашел в задние ряды, и толпа сдвинулась плотнее.
– Эй! кто у вас староста тут? – крикнул Ростов, быстрым шагом подойдя к толпе.
– Староста то? На что вам?.. – спросил Карп. Но не успел он договорить, как шапка слетела с него и голова мотнулась набок от сильного удара.
– Шапки долой, изменники! – крикнул полнокровный голос Ростова. – Где староста? – неистовым голосом кричал он.

Если откос массива грунта имеет крутизну больше предельной, то произойдет обрушение грунта. Удержать массив в равновесии можно при помощи подпорной стенки. Подпорные стенки широко применяются в различных областях строительства. На рис. 5.9 показаны некоторые случаи применения подпорных стенок.

а) б) в)

Давление грунта, передаваемое призмой обрушения на грань стенки, носит название активного давления Е а . При этом подпорная стенка смещается в сторону от засыпки. Если же подпорная стенка смещается в сторону грунта, то грунт засыпки будет выпирать вверх. Стенка будет преодолевать вес грунта призмы выпирания, что потребует значительно большего усилия. Это соответствует пассивному давлению (отпору) грунта Е р .

Поскольку в пределах призмы обрушения возникает предельное равновесие, задача по определению давления грунта на подпорную стенку решается методами теории предельного равновесия со следующими допущениями: поверхность скольжения плоская, а призма обрушения соответствует максимальному давлению грунта на подпорную стенку. Эти допущения адекватны только для определения активного давления.

5.5.1. Аналитический метод определения давления грунта

на подпорную стенку

Рассмотрим условие предельного равновесия элементарной приз-

мы, вырезанной из призмы обрушения вблизи задней грани подпорной стенки при горизонтальной поверхности грунта и вертикальной задней грани подпорной стенки, при с = 0 (рис. 5.10). На горизонтальную и вертикальную площадки этой призмы при трении о стенку, равном нулю, будут действовать главные напряжения и .

Из условия предельного равновесия на глубине z

,(5.17)

здесь горизонтальное давление грунта, величина которого прямо пропорциональна глубине z , т.е. давление грунта на стенку будет распределяться по закону треугольника с ординатами = 0 на поверхности грунта и у подошвы стенки. На глубине, равной высоте стенки Н , давление . Тогда согласно условию (5.17) боковое давление на глубине Н

, (5.18)

а активное давление характеризуется площадью эпюры и равно

. (5.19)

Равнодействующая этого давления приложена на высоте от подошвы стенки.

Учет сцепления грунта. Для связного грунта, обладающего внутренним трением и сцеплением, условие предельного равновесия может быть представлено в виде

Сопоставляя (5.19) с (5.20), отметим, что выражение (5.19) характеризует давление сыпучего грунта без учета сцепления, а (5.20) показывает, насколько снижается интенсивность давления вследствие того, что грунт обладает сцеплением. Тогда это выражение можно представить в виде

, (5.21)

где , . (5.22)

Таким образом, сцепление грунта уменьшает боковое давление грунта на стенку на величину по всей высоте. Напомним, что связный грунт способен держать вертикальный откос высотой , определяемой по формуле

, (5.23)

поэтому до глубины от свободной поверхности засыпки связный грунт не будет оказывать давления на стенку. Полное активное давление связного грунта определяется как площадь треугольной эпюры со сторонами и (рис. 5.11).

. (5.24)

Пассивное сопротивление связных грунтов определяется аналогично, с учетом того, что в формулах (5.20) и (5.22) знак минус в скобках аргумента тангенса изменится на плюс.

5.5.2. Давление грунтов на подземные трубопроводы

Давление грунта на трубопровод определяют на основе общей теории предельного напряженного состояния. Вертикальное давление в грунтовом массиве, ограниченном горизонтальной поверхностью, на глубине z (рис. 5.12, а ) с удельным весом грунта определяют по формуле

Боковое давление грунта на той же глубине

где – коэффициент бокового давления грунта в условиях естественного залегания, равный .

Если в зоне, контуром которой является трубопровод, грунт в точности заменить самим трубопроводом (рис. 5.12, б ), то естественно, что этот трубопровод будет испытывать давление, которое определяется зависимостями (5.26) и (5.27).

Давление на трубопровод передается сверху и с боков и вызывает равную и противоположно направленную реакцию основания: оно принимается в виде среднего равномерно распределенного давления – вертикального интенсивностью р и горизонтального интенсивностью q , причем имеет место соотношение р > q . Следует различать три принципиально различных способа прокладки трубопроводов: в траншее (рис. 5.13, а ), с помощью закрытой проходки (прокола) (рис. 5.13, б ) и под насыпью (рис. 5.13, в ).

При одинаковой глубине заложения Н трубопроводов давление р будет различным: при траншейной укладке р < ; в насыпи р > и при проколе, если Н сравнительно мало, р = , при больших значениях Н р < .

При укладке трубопроводов в траншеи грунт, находящийся сбоку от траншеи, уже ранее уплотнился под действием собственного веса, в то время как грунт, засыпанный в траншею после укладки трубопровода, находится в рыхлом состоянии. Поэтому уплотнению этого грунта-засыпки и его осадке противодействуют силы трения по бортам траншеи, и грунт-засыпка как бы зависает на стенках траншеи и тем более, чем больше будет глубина траншеи.

Составим условия равновесия для элементарного слоя , выделенного на глубине z (рис. 5.13, а ). На этот элемент будут действовать собственный вес слоя грунта засыпки сверху и снизу , а у стенок траншеи сопротивление грунта сдвигу на единицу площади (где с – сцепление грунта; – угол трения о стенку траншеи). Примем далее коэффициент бокового давления грунта постоянным, т.е.

.

Проектируем силы на вертикальную ось z , получим

После приведения подобных членов и интегрирования при граничных условиях (z = 0; = 0) получим полное давление грунта на глубине z , максимальное значение которого (введя коэффициент перегрузки n ≈ 1,2) можно представить в виде

, (5.28)

где – коэффициент давления грунта на трубопровод в траншее.

Значение для труб, закладываемых в траншеи, не может быть больше единицы ( ≤ 1). Для приближенного определения можно пользоваться кривыми графика профессора Г.К. Клейна, которые дают с некоторым запасом (полагая сцепление с = 0).

где h с – расчетная высота свода обрушения; B – ширина свода обрушения; f" – коэффициент крепости (по М.М. Протодьяконову), принимаемый для насыпных грунтов 0,5; влажных и водонасыщенных песков – 0,6; глинистых грунтов – 0,8.

Контрольные вопросы

1.Какие инженерные задачи рассматриваются в теории предельного равновесия грунтовой среды?

2.На какие две группы подразделяются предельные состояния?

3.Запишите условия предельного равновесия песка.

4.Запишите условие предельного равновесия связного грунта,

выраженное через главные напряжения.

5.Какая нагрузка считается критической? При каких условиях она определяется?

6.Что такое расчетное сопротивление грунта основания?

7.Какая нагрузка является предельной нагрузкой на основание?

8.Какие вы знаете решения по определению предельной нагрузки на основание?

9.От каких факторов зависит устойчивость откоса?

10.Какие основные причины могут вызвать нарушение устойчивости откосов?

12.Каков предельный угол наклона сыпучего откоса?

13.С какой целью применяют подпорные стенки?

14.Что называется активным давлением грунта на стенку?

15.Что называют пассивным давлением грунта на стенку?

16.Каким образом влияет на величину активного и пассивного давлений на стенку удельное сцепление в грунте?


Раздел 6. СПЕЦИАЛЬНЫЕ ВОПРОСЫ МЕХАНИКИ ГРУНТОВ