Корпускулярно-волновой дуализм. Принцип дополнительности. Корпускулярно-волновой дуализм – миф или реальность

Свет долгое время оставался одним из главных объектов изучения. Многие учёные стремились познать его природу, но сделать это было сложно из-за ограниченных возможностей. Самой первой теорией, пытавшейся объяснить природу света, была волновая теория. Она долгое время считалась правильной и верной, и не было никаких предпосылок, чтобы сформировался корпускулярно-волновой дуализм. В то время в физике бытовало мнение, что свет по своей природе - волна, а атомы и другие мелкие частицы обладали только корпускулярными свойствами.

Теория начинала рушиться, потому что не удавалось объяснить Резерфорд в результате своих опытов сделал предположение, что ядро атома находится в центре, там же сосредоточена основная масса, а электроны распределяются по всему объему, свободно заполняя пространство. Но теория не нашла подтверждения, потому что согласно расчётам, подобная система не могла быть устойчивой.

Предпосылки формирования новой теории

Позже было открыто явление фотоэффекта, который выходил за рамки классической физики, которая главенствовала в то время. Впоследствии именно фотоэффект помог сформировать корпускулярно-волновой дуализм, потому что это привело к необходимости создания Её особенностью стало то, что частицы получали свойства, которые были невозможны бы, если рассматривать их в свете принципов физики классической. Корпускулярно-волновой дуализм стал одной из первых теорий, изучаемых в новом

Суть фотоэффекта заключалась в том, что обычные вещества под воздействием коротковолнового излучения испускают быстрые электроны. Главным расхождением с классической физикой стал тот факт, что энергия испускаемых быстрых электронов не зависела от интенсивности излучения. Значения имело только свойства самого вещества, а также частота излучения. На тот момент не удавалось объяснить механизмы высвобождения фотоэлектронов на основе имеющихся данных.

Волновая теория представлялась стройной и неоспоримой. Согласно ей, энергия излучения равномерно распространялась в световой волне. Когда она попадает на электрон, она сообщает ему определённое количество энергии, соответственно, согласно этой теории, чем выше интенсивность, тем больше энергия. Однако на деле выходило всё несколько иначе.

Развитие идеи дуализма

Альберт Эйнштейн начал высказывать идеи о дискретной природе света. Также начали развиваться квантовая теория поля и концепции квантовых полей, которые помогли сформировать корпускулярно-волновой дуализм.

Суть заключается в том, что на свет могут воздействовать следовательно, он имеет физические свойства потока частиц - фотонов. Но при этом в таких явлениях, как дифракция и демонстрирует явные свойства волны. Был проведён ряд опытов, доказывающих двойственность структуры света. Именно на их основе был построен корпускулярно-волновой дуализм света, т.е. фотон проявляет корпускулярные свойства, но в ряде экспериментов он имел чёткие проявление волновых свойств.

Нужно понимать, что подобные идеи на данный момент представляют лишь исторический интерес. Корпускулярно-волновой дуализм свойств вещества сформировался как теория в период, когда изучение подобных свойств только начиналось, тогда же были фактически основаны новые разделы физики. Подобная теория была попыткой объяснить новые явления языком классической физики.

На самом деле, с точки зрения квантовой физики подобные объекты не являются частицами, по крайне мере, в классическом понимании. Они приобретают определённые свойства лишь при приближении. Впрочем, теория дуализма по-прежнему используется для объяснения определённых принципов природы света.

Введение

Почти одновременно были выдвинуты две теории света: корпускулярная теория Ньютона и волновая теория Гюйгенса.

Согласно корпускулярной теории, или теории истечения, выдвинутой Ньютоном в конце 17 века, светящиеся тела испускают мельчайшие частицы (корпускулы), которые летят прямолинейно по всем направления и, попадая в глаз, вызывают световое ощущение.

Согласно волновой теории светящееся тело вызывает заполняющей все мировое пространство особой среде – мировом эфире – упругие колебания, которые распространяются в эфире подобно звуковым волнам в воздухе.

Во времена Ньютона и Гюйгенса большинство ученых придерживалось корпускулярной теории Ньютона, которая достаточно удовлетворительно объясняла все известные к тому времени световые явления. Отражение света объяснялось аналогично отражению упругих тел при ударе о плоскость. Преломление света объяснялось действием на корпускулы больших сил притяжения со стороны более плотной среды. Под действием этих сил, проявляющихся, согласно теории Ньютона, при приближении к более плотной среде, световые корпускулы получали ускорение, направленные перпендикулярно к границе этой среды, вследствие чего они изменяли направление движения и одновременно увеличивали свою скорость. Аналогично объяснялись другие световые явления.

В дальнейшем появившиеся новые наблюдения не укладывались в рамки этой теории. В частности, несостоятельность этой теории обнаружилось, когда была измерена скорость распространения света в воде. Она оказалась не больше, а меньше, чем в воздухе.

В начале 19 века волновая теория Гюйгенса, не признанная современниками, была развита и усовершенствована Юнгом и Френелем и получила всеобщее признание. В 60–х годах прошлого столетия, после того как Максвелл разработал теорию электромагнитного поля, выяснилось, что свет представляет собой электромагнитные волны. Таким образом, волновая механистическая теория света была заменена волновой электромагнитной теорией. Световые волны (видимый спектр) занимают в шкале электромагнитных волн диапазон 0,4–0,7мкм. Волновая теория света Максвелла, трактующая излучение как непрерывный процесс, оказалась не в состоянии объяснить некоторые из вновь открытых оптических явлений. Её дополнила квантовая теория света, согласно которой энергия световой волны излучается, распространяется и поглощается не непрерывно, а определенными порциями - квантами света, или фотонами, - которые зависят только от длины световой волны. Таким образом, по современным представлениям, свет обладает как волновыми так, и корпускулярными свойствами.

Интерференция света

Волны создающие в каждой точке пространства колебания с не изменяющейся со временем разностью фаз, называются когерентными. Разность фаз в этом случае имеет постоянное, но, вообще говоря, различное для разных точек пространства значение. Очевидно, что когерентными могут быть лишь волны одинаковой частоты.

При распространении в пространстве нескольких когерентных волн порождаемые этими волнами колебания в одних точках усиливают друг друга, в других – ослабляют. Это явление называется интерференцией волн. Интерферировать могут волны любой физической природы. Мы рассмотрим интерференцию световых волн.

Источники когерентных волн также называются когерентными. При освещении некоторой поверхности несколькими когерентными источниками света на этой поверхности возникают в общем случае чередующиеся светлые и темные полосы.

Два независимых источника света, например две электролампы, не когерентны. Излучаемые ими световые волны – это результат сложения большого количества волн, излучаемых отдельными атомами. Излучение волн атомами происходит беспорядочно, и поэтому нет каких - либо постоянных соотношений между фазами волн, излучаемых двумя источниками.

При освещении поверхности некогерентными источниками характерная для интерференции картина чередующихся светлых и темных полос не возникает. Освещенность в каждой точке оказывается равной сумме освещенностей, создаваемых каждым из источников в отдельности.

Когерентные волны получаются посредством разделения пучка света от одного источника на два или несколько отдельных пучков.

Интерференцию света можно наблюдать при освещении монохроматическими (одноцветными) лучами прозрачной пластинки переменной толщины, в частности клинообразной пластинки. В глаз наблюдателя будут попадать волны, отраженные как от передней, так и от задней поверхностей пластинки. Результат интерференции определяется разностью фаз тех и других волн, которая постепенно изменяется с изменением толщины

пластинки. Соответственно изменяется освещенность: если разность хода интерферирующих волн в некоторой точке поверхности пластинки равна четному числу полуволн, то в этой точке поверхность будет казаться светлой, при разности фаз в нечетное число полуволн – темной.

При освещении параллельным пучком плоскопараллельной пластинки разность фаз световых волн, отраженных от передней и задней её поверхностей, одна и та же во всех точках, - пластинка будет казаться освещенной равномерно.

Вокруг точки соприкосновения слегка выпуклого стекла с плоским при освещении монохроматическим светом наблюдаются темные и светлые кольца – так называемые кольца Ньютона. Здесь тончайшая прослойка воздуха между обоими стеклами играет роль отражающей пленки, имеющей постоянную толщину по концентрическим окружностям.

Дифракция света.

У световой волны не происходит изменения геометрической формы фронта при распространении в однородной среде. Однако если распространение света осуществляется в неоднородной среде, в которой, например, находятся не прозрачные экраны, области пространства со сравнительно резким изменением показателя преломления и т. п., то наблюдается искажение фронта волны. В этом случае происходит перераспределение интенсивности световой волны в пространстве. При освещении, например, непрозрачных экранов точечным источником света на границе тени, где согласно законам геометрической оптики должен был бы проходить скачкообразный переход от тени к свету, наблюдается ряд тёмных и светлых полос, часть света проникает в область геометрической тени. Эти явления относятся к дифракции света.

Итак, дифракция света в узком смысле - явление огибания светом контура непрозрачных тел и попадание света в область геометрической тени; в широком смысле - всякое отклонение при распространении света от законов геометрической оптики.

Определение Зоммерфельда: под дифракцией света понимают всякое отклонение от прямолинейного распространения, если оно не может быть объяснено как результат отражения, преломления или изгибания световых лучей в средах с непрерывно меняющимся показателем преломления.

Если в среде имеются мельчайшие частицы (туман) или показатель преломления заметно меняется на расстояниях порядка длины волны, то в этих случаях говорят о рассеянии света и термин «дифракция» не употребляется.

Различают два вида дифракции света. Изучая дифракционную картину в точке наблюдения, находящейся на конечном расстоянии от препятствия, мы имеем дело с дифракцией Френеля. Если точка наблюдения и источник света расположены от препятствия так далеко, что лучи, падающие на препятствие, и лучи, идущие в точку наблюдения, можно считать параллельными пучками, то говорят о дифракции в параллельных лучах – дифракции Фраунгофера.

Теория дифракции рассматривает волновые процессы в тех случаях, когда на пути распространения волны имеются какие – либо препятствия.

С помощью теории дифракции решают такие проблемы, как защита от шумов с помощью акустических экранов, распространение радиоволн над поверхностью Земли, работа оптических приборов (так как изображение, даваемое объективом, - всегда дифракционная картина), измерения качества поверхности, изучение строения вещества и многие другие.

Поляризация света

Явления интерференции и дифракции, послужившие для обоснования волновой природы света, не дают еще полного представления о характере световых волн. Новые черты открывает нам опыт над прохождением света через кристаллы, в частности через турмалин.

Возьмем две одинаковые прямоугольные пластинки турмалина, вырезанные так, что одна из сторон прямоугольника совпадает с определенным направлением внутри кристалла, носящим название оптической оси. Наложим одну пластинку на другую так, чтобы оси их совпадали по направлению, и пропустим через сложенную пару пластинок узкий пучок света от фонаря или солнца. Так как турмалин представляет собой кристалл буро – зеленого цвета, то след прошедшего пучка на экране представится в виде тёмно – зеленого пятнышка. Начнем поворачивать одну из пластинок вокруг пучка, оставляя вторую неподвижной. Мы обнаружим, что след пучка становится слабее, и когда пластинка повернётся на 90 0 , он совсем исчезнет. При дальнейшем вращении пластинки проходящий пучок вновь начнет усиливаться и дойдет до прежней интенсивности, когда пластинка повернется на 180 0 , т.е. когда оптические оси пластинок вновь расположатся параллельно. При дальнейшем вращении турмалина пучок вновь слабеет.

Можно объяснить все наблюдающиеся явления, если сделать следующие выводы.

1) Световые колебания в пучке направлены перпендикулярно к линии распространения света (световые волны поперечны).

2) Турмалин способен пропускать световые колебания только в том случае, когда они направлены определенным образом относительно его оси.

3) В свете фонаря(солнца) представлены поперечные колебания любого направления и притом в одинаковой доле, так что ни одно направление не является преимущественным.

Эффект Комптона и фотоэффект подтверждает корпускулярную природу света. Свет ведет себя как поток частиц – фотонов. Тогда как же частица может обнаруживать свойства, присущие классическим волнам? Ведь частица может пройти либо через одну, либо через другую щель. Однако известна интерференция света от двух щелей (опыт Юнга). Таким образом, мы пришли к парадоксу – свет обладает одновременно и свойствами корпускул, и свойствами волн. Поэтому говорят, что свету свойственен корпускулярно-волновой дуализм.

Противопоставление квантовых и волновых свойств света друг другу является ошибочным. Свойства непрерывности электромагнитного поля световой волны не исключают свойств дискретности, характерных для световых квантов – фотонов. Свет одновременно обладает свойствами непрерывных электромагнитных волн и свойствами дискретных фотонов. Он представляет собой диалектическое единство этих свойств. С уменьшением длины волны все более отчетливо проявляются квантовые свойства света (с этим связано, например, существование красной границы фотоэффекта). Волновые же свойства у коротковолнового излучения проявляются весьма слабо (например, дифракция у рентгеновских лучей). У длинноволнового же излучения квантовые свойства проявляются слабо и основную роль играют волновые свойства.

Взаимосвязь корпускулярно-волновых свойств света объясняется статистическим подходом к исследованию распространения света. Свет – это поток дискретных частиц – фотонов, в которых локализованы энергия, импульс и масса излучения. Взаимодействие фотонов с веществом при переходе через какую-нибудь оптическую систему приводит к перераспределению фотонов в пространстве и возникновению дифракционной картины. При этом квадрат амплитуды световой волны в какой-либо точке пространства является мерой вероятности попадания фотонов в эту точку.

Таким образом, корпускулярные свойства света связаны с тем, что энергия, масса и импульс излучения локализованы в дискретных фотонах, а волновые – со статистическими закономерностями распределения фотонов в пространстве.

Лекция 4

2.Двойственная корпускулярно-волновая природа частиц вещества

2.1. Гипотеза де Бройля

В 1924 г. французский физик Луи де Бройль выдвинул гипотезу, согласно которой движение электрона, или какой-либо другой частицы, связано с волновым процессом. Длина волны этого процесса:

а частота ω = Е/ħ , т.е. корпускулярно-волновой дуализм присущ всем без исключения частицам.

Если частица имеет кинетическую энергию Е , то ей соответствует длина волны де Бройля:

Для электрона, ускоряемого разностью потенциалов
, кинетическая энергия
,и длина волны

Å. (2.1)

Опыты Дэвиссона и Джермера (1927). Идея их опытов за­ключалась в следующем. Если пучок электронов обладает вол­новыми свойствами, то можно ожидать, даже не зная механиз­ма отражения этих волн, что их отражение от кристалла будет иметь такой же интерференционный характер, как у рентге­новских лучей.

Водной серии опытов Дэвиссона и Джермера для обнаруже­ния дифракционных максимумов (если таковые есть) измеря­лись ускоряющее напряжение электронов и одновременно положение детектораD (счетчика отраженных электронов). В опы­те использовался монокристалл никеля (кубической системы), сошлифованный так, как показано на рис.2.1.

Если его повернуть вокруг вертикаль­ной оси в положение, соответствующее ри­сунку, то в этом положении сошлифованная поверхность покрыта правильными рядами атомов, перпендикулярными к плоскости падения (плоскости рисунка), расстояние между которыми d = 0,215 нм.

Детектор перемещали в плоскости падения, меняя уголθ. При угле θ = 50° и ускоряю­щем напряжении U = 54В наблюдался осо­бенно отчётливый максимум отраженных электронов, полярная диаграмма которого показана на рис.2.2.

Этот максимум можно истолковать как интерференционный максимум первого по­рядка от плоской дифракционной решетки с периодом

, (2.2)

что видно из рис.2.3. На этом рисун­ке каждая жирная точка представляет собой проекцию цепочки атомов, расположенных на прямой, перпендикулярной плоскости рисунка. Пе­риод d может быть измерен независи­мо, например, по дифракции рентге­новских лучей.

Вычисленная по формуле (2.1) дебройлевская длина волны дляU = 54В равна 0,167 нм. Соответству­ющая же длина волны, найденная из формулы (2.2), равна 0,165 нм. Совпадение настолько хорошее, что полученный результат следует признать убедительным под­тверждением гипотезы де Бройля.

Другая серия опытов Дэвиссона и Джермера состояла в из­мерении интенсивности I отраженного электронного пучка при заданном угле падения, но при различных значениях ускоряю­щего напряжения U .

Теоретически должны появиться при этом интерференцион­ные максимумы отражения подобно отражению рентгеновских лучей от кристалла. От различных кристаллических плоскостей кристалла в результате дифракции падающего излучения на атомах исходят волны, как бы испытавшие зеркальное отраже­ние от этих плоскостей. Данные волны при интерференции усиливают друг друга, если выполняется условие Брэгга-Вульфа:

, m =1,2,3,…, (2.3)

где d - межплоскостное расстояние, α - угол скольжения.

Напомним вывод этой формулы. Из рис. 2.4 видно, что разность хода двух волн, 1 и 2, отразившихся зеркально от соседних атомных слоев, АВС =
. Следователь­но, направления, в которых возникают ин­терференционные максимумы, определяют­ся условием (2.3).

Теперь подставим в формулу (2.3) выра­жение (2.1) для дебройлевской длины вол­ны. Поскольку значения α и d экспериментаторы оставляли неизменными, то из формулы (2.3) следует, что

~т, (2.4)

т.е. значения
, при которых образуются максимумы отра­жения, должны быть пропорциональны целым числам т = 1, 2, 3, ..., другими словами, находиться на одинаковых расстояни­ях друг от друга.

Это и было проверено на опыте, результаты которого пред­ставлены на рис.2. 5, гдеU представлено в вольтах. Видно, что максимумы интен­сивности I почти равноудалены друг от друга (такая же карти­на возникает и при дифракции рентгеновских лучей от крис­таллов).

Полученные Дэвиссоном и Джермером результаты весьма убедительно подтверждают гипотезу де Бройля. В теоретическом отношении, как мы видели, анализ дифракции дебройлевских волн полностью совпадает с дифрак­цией рентгеновского излучения.

Итак, характер зависимости (2.4) экспериментально подтвердился, однако наблюдалось некоторое расхождение с пред­сказаниями теории. А именно, между положениями экспери­ментальных и теоретических максимумов (последние показаны стрелками на рис. 2.5) наблюдается систематическое расхожде­ние, которое уменьшается с увеличением ускоряющего напря­жения U . Это расхождение, как выяснилось в дальнейшем, обу­словлено тем, что при выводе формулы Брэгга-Вульфа не было учтено преломление дебройлевских волн.

О преломлении дебройлевских волн. Показатель преломле­ния п дебройлевских волн, как и электромагнитных, определя­ется формулой

, (2.5)

где и - фазовые скорости этих волн в вакууме и среде (кристалле).

Фазовая ско­рость дебройлевcкой волны - принципиально ненаблюдаемая величина. Поэтому формулу (2.5) следует преобразовать так, чтобы показатель преломления п можно было выразить через отношение измеряемых величин. Это можно сделать следующим образом. По определению, фазовая скорость

, (2.6)

где k - волновое число. Считая аналогично фотонам, что частота и дебройлевских волн тоже не меняется при переходе границы раздела сред (если такое предположение несправедливо, то опыт неизбежно укажет на это), представим (2.5) с уче­том (2.6) в виде

(2.7)

Попадая из вакуума в кристалл (металл), электроны оказыва­ются в потенциальной яме. Здесь их кине­тическая энергия возрастает на «глубину» потенциальной ямы (рис. 2.6). Из формулы (2.1), где
, следует, что λ~
Поэтому выражение (2.7) можно переписать так:

(2.8)

где U 0 - внутренний потенциал кристалла. Видно, что чем бо­льше U (относительно ), тем п ближе к единице. Таким обра­зом, п проявляет себя особенно при малых U , и формула Брэг­га-Вульфа принимает вид

(2.9)

Убедимся, что формула Брэгга-Вульфа (2.9) с учетом пре­ломления действительно объясняет положения максимумов ин­тенсивности
на рис. 2.5. Заменив в (2.9)п и λ согласно формулам (2.8) и (2.1) их выражениями через ускоряющую разность потенциалов U , т.е.

(2.11)

Теперь учтем, что распределение
на рис.2.5 получено для никеля при значенияхU 0 =15 B, d =0,203 нм и α =80°. Тогда (2.11) после несложных преобразований можно перепи­сать так:

(2.12)

Вычислим по этой формуле значение
, например, для макси­мума третьего порядка (m = 3), для которого расхождение с формулой Брэгга-Вульфа (2.3) оказалось наибольшим:

Совпадение с действительным положением максимума 3-го по­рядка не требует комментариев.

Итак, опыты Дэвиссона и Джермера следует признать блес­тящим подтверждением гипотезы де Бройля.

Опыты Томсона и Тартаковского . В этих опытах пучок элек­тронов пропускался через поликристаллическую фольгу (по ме­тоду Дебая при изучении дифракции рентгеновского излучения). Как и в случае рентгеновского излучения, на фотопластинке, рас­положенной за фольгой, наблюдалась система дифракционных колец. Сходство обеих картин поразительно. Подозрение, что система этих колец порождается не электронами, а вторичным рентгеновским излучением, возникающим в результате паде­ния электронов на фольгу, легко рассеивается, если на пути рассеянных электронов создать магнитное поле (поднести по­стоянный магнит). Оно не влияет на рентгеновское излучение. Такого рода проверка показала, что интерференционная карти­на сразу же искажалась. Это однозначно свидетельствует, что мы имеем дело именно с электронами.

Г. Томсон осуществил опыты с быстрыми электронами (де­сятки кэВ), II.С. Тарковский - со сравнительно медленными электронами (до 1,7 кэВ).

Опыты с нейтронами и молекулами. Для успешного наблю­дения дифракции волн на кристаллах необходимо, чтобы длина волны этих волн была сравнима с расстояниями между узлами кристаллической решетки. Поэтому для наблюдения дифракции тяжелых частиц необходимо пользоваться частицами с достаточ­но малыми скоростями. Соответствующие опыты по дифракции нейтронов и молекул при отражении от кристаллов были проде­ланы и также полностью подтвердили гипотезу де-Бройля в при­менении и к тяжелым частицам.

Благодаря этому было экспериментально доказано, что вол­новые свойства являются универсальным свойством всех час­тиц. Они не обусловлены какими-то особенностями внутренне­го строения той или иной частицы, а отражают их общий закон движения.

Опыты с одиночными электронами . Описанные выше опыты выполнялись с использованием пучков частиц. Поэтому возни­кает естественный вопрос: наблюдаемые волновые свойства вы­ражают свойства пучка частиц или отдельных частиц?

Чтобы ответить на этот вопрос, В. Фабрикант, Л. Биберман и Н. Сушкин осуществили в 1949 г. опыты, в которых применялись столь слабые пучки электронов, что каждый электрон проходил через кристалл заведомо поодиночке и каждый рассеянный элект­рон регистрировался фотопластинкой. При этом оказалось, что отдельные электроны по­падали в различные точки фотопластинки со­вершенно беспорядочным на первый взгляд образом (рис.2.7,а). Между тем при доста­точно длительной экспозиции на фотоплас­тинке возникала дифракционная картина (рис.2.7, б), абсолютно идентичная картине дифракции от обычного электронного пучка. Так было доказано, что волновыми свойст­вами обладают и отдельные частицы.

Таким образом, мы имеем дело с микро­объектами, которые обладают одновременно как корпускулярными, так и волновыми свойствами. Это позволяет нам в дальней­шем говорить об электронах, но выводы, к которым мы придем, имеют совершенно об­щий смысл и в равной степени применимы к любым частицам.

Из формулы де Бройля следовало, что волновые свойства должны быть присущи любой частице вещества, имеющей массу и скорость . В 1929г. опыты Штерна доказали, что формула де Бройля справедлива и для пучков атомов и молекул. Он получил следующее выражение для длины волны:

Ǻ,

где μ – молярная масса вещества, N А – число Авогадро, R – универсальная газовая постоянная, Т – температура.

При отражении пучков атомов и молекул от поверхностей твердых тел должны наблюдаться дифракционные явления, которые описываются теми же соотношениями, что и плоская (двумерная) дифракционная решетка. Опыты показали, что кроме частиц, рассеянных под углом, равным углу падения, наблюдаются максимумы числа отраженных частиц под другими углами, определяемыми формулами двумерной дифракционной решетки.

Формулы де Бройля оказались справедливыми также для нейтронов. Это подтвердили опыты по дифракции нейтронов на приемниках.

Таким образом, наличие волновых свойств у движущихся частиц, обладающих массой покоя, есть универсальное явление, не связанное с какой-либо спецификой движущейся частицы.

Отсутствие волновых свойств у макроскопических тел объясняется следующим образом. Подобно той роли, кото­рую играет скорость света при решении вопроса о применимо­сти ньютоновской (нерелятивистской) механики, существует критерий, показывающий в каких случаях можно ограничиться классическими представлениями. Этот критерий связан с постоянной Планка ħ. Физическая размерность ħ равна (энергия )x(время ), или (им­пульс )x(длина ), или (момент импульса). Величину с такой размерностью называют действием. Постоянная Планка явля­ется квантом действия.

Если в данной физической системе значение некоторой характерной величи­ны Н с размерностью действия сравнимо с ħ , то поведение этой системы может быть описано только в рамках квантовой тео­рии. Если же значение Н очень велико по сравнению с ħ , то поведение системы с высокой точностью описывают законы клас­сической физики.

Отметим, однако, что данный критерий имеет приближен­ный характер. Он указывает лишь, когда следует проявлять осторожность. Малость действия Н не всегда свидетельствует о полной неприменимости классического подхода. Во многих случаях она может дать некоторое качественное представление о поведении системы, которое можно уточнить с помощью квантового подхода.

Термин «дуализм» в физике в широком смысле означает:

1) существование противоположных свойств у физических объектов;

2) использование противоположных понятий при описании и объяснении физических явлений;

3) наличие противоположных (взаимоисключающих) утверждений в формулировке законов, управляющих физическими явлениями.

Наиболее фундаментальными проявлениями дуализма являются:

1) корпускулярно-волновой дуализм в свойствах элементарных частиц;

2) наличие в природе частиц и античастиц, противоположных электрических зарядов, различного знака лептонных и барионных чисел (см. ч. IV, § 23) и др.;

3) противоположные свойства у частиц вещества и у силовых полей, т. е. у «корпускулярной» и «полевой» материи;

4) использование понятий «энергия» и «работа»;

5) существование в физических системах сил отталкивания и сил притяжения, одновременное действие которых определяет свойства физических систем;

6) связь между количественными и качественными изменениями в свойствах физических систем;

7) однозначность и вероятность в законах физики;

8) дискретность и непрерывность в природе, связь между ними и т. д.

Сущность дуализма (т. е. содержание терминов «противоположные свойства», «понятия», «утверждения») может быть показана на примере сочетания корпускулярных и волновых свойств у элементарных частиц (фотонов, электронов и т. д.). В тексте (см. ч. IV, § 10-12) было показано, что:

1) корпускулярные и волновые свойства частиц неотделимы друг от друга. Каждая частица имеет оба эти свойства в единстве и

взаимной обусловленности, причем нет никакой возможности лишить частицу одного из этих свойств. По-видимому, не существуют частицы, обладающие только корпускулярными или только волновыми свойствами;

2) корпускулярные и волновые свойства несводимы друг к другу. Это означает, что волновые свойства частицы нельзя объяснить через корпускулярные, и наоборот;

3) корпускулярные и волновые свойства неразрывно связаны между собой.

Корпускулярно-волновой дуализм лежит в основе квантовой физики, описывающей микрофизические системы и процессы. Таким образом, один из важнейших разделов современной физики является дуалистическим по своему характеру и содержанию. Непрерывная волновая функция частиц и физических систем, с одной стороны, корпускулярные свойства этих же частиц и систем - с другой, существуют в квантовой физике в единстве и взаимной связи. Все попытки устранить этот дуализм успеха не имели. Поэтому можно утверждать, что дуализм в квантовой теории есть не временное, случайное, побочное явление, вызванное, например, трудностями описания микрофизических систем, а отражение господствующего в природе объективного дуализма.

Рассмотрим другое проявление дуализма в природе - наличие частиц и античастиц. Предварительно заметим, что физические свойства частиц можно условно разделить на две группы:

1) свойства, которые у различных частиц отличаются только по величине; к важнейшим из них относится инертная масса. Заметим, что масса не является аддитивным свойством (масса физической системы меньше суммы масс составных частиц, измеренных в свободном состоянии), зависит от состояния частицы (скорости движения) и от условий, в которых находится частица (масса нуклонов в поле ядерных сил отличается от их масс вне ядра);

2) свойства, отличающиеся качественно, например противоположные электрические заряды. Заметим, что заряды обладают аддитивностью, не зависят от скорости движения и от условий, в которых находятся заряженные частицы. Это означает, что заряды (а также и лептонные и барионные числа) являются более фундаментальными свойствами частиц, чем инертная масса.

Элементарные частицы могут сортироваться по набору присущих им фундаментальных свойств. В зависимости от характера и числа этих свойств определяется содержание таких понятий, как «одинаковые» или «различные» частицы. Очевидно, что тождественность частиц (или вообще физических объектов) есть предельный случай одинаковости, когда между объектами нет никакого различия: ни в наборе присущих им свойств, ни в их структуре, состоянии и поведении в различных условиях (такими тождественными объектами являются элементарные частицы определенного сорта, находящиеся в одинаковых условиях). Противоположность физических объектов следует рассматривать как предельный случай различия, когда это различие является полным, т. е. объекты не имеют никаких одинаковых свойств.

Заметим, что частицы и античастицы в этом смысле не являются противоположностями, так как они имеют кроме различных еще и одинаковые свойства (так, например, электрон и позитрон имеют различные заряды, но одинаковые по величине спины и массы покоя). Таким образом, частицы и античастицы являются полярными, но не противоположными объектами.

В связи с изложенным возникают следующие вопросы:

1) существуют ли в природе «противоположные объекты»;

2) возможно ли взаимодействие между ними, каковы особенности этого взаимодействия и значение в природе;

3) чем отличаются взаимодействия между одинаковыми, полярными и противоположными объектами.

Обсуждение этих вопросов имеет важное мировоззренческое значение; положительные результаты этого обсуждения позволят уточнить наши представления о том, как устроена окружающая нас природа. Такое обсуждение должно проводиться на основе определенной философской системы и затронет все разделы физики. В частности, можно полагать, что противоположными объектами в природе являются «вещество» и «поля». Под «веществом» обычно понимаются элементарные частицы и системы, составленные из них: атомные ядра, атомы, молекулы и т. д.; под «полем» понимаются различные силовые поля: гравитационные, электромагнитные, ядерные и т. д. Существуют два представления о полях. В одном из них предполагается, что поля непрерывно заполняют пространство вокруг частиц вещества и, будучи «особым образом» связаны с ними, определяют характер и интенсивность взаимодействия между ними. В другом представлении предполагается, что каждое поле состоит из «особых частиц поля», которые испускаются и поглощаются частицами вещества и тем самым вызывают силы взаимодействия между ними. Например, электромагнитное поле считается состоящим из фотонов («фотонный газ»); если их число в единице объема очень велико, то электромагнитное поле будет вести себя как непрерывная среда; если же это число мало и изучаются процессы, в которых участвуют отдельные фотоны, то понятие электромагнитного поля как непрерывной среды теряет смысл.

Здесь необходимо подчеркнуть, что существующие в настоящее время представления о веществе и полях не следует полагать окончательными. Развитие экспериментальной и теоретической физики может привести не только к уточнению, но и к радикальным изменениям наших представлений о природе и о сущности происходящих в ней явлений. Возможно, что в будущем восторжествуют монистические мировоззрения, согласно которым природа состоит: 1) либо только из частиц вещества, а поле есть лишь способ описания взаимодействия между ними; 2) либо только из различных полей, а частицы вещества есть лишь их «особые точки». Однако не исключено, что все известные опытные данные получат удовлетворительное объяснение и на основе дуалистического мировоззрения, в котором вещество и поля полагаются противоположными объектами, несводимыми и неотделимыми друг от друга, неразрывное взаимодействие которых является основой всех наблюдаемых нами явлений природы.

Дуализм обнаруживается и в одновременном существовании вероятностного и однозначного описания физических явлений. Классическое, строго детерминированное описание невозможно исключить из физики; оно необходимо для описания наивероятного течения физических явлений. С другой стороны, всегда существует разброс состояний изучаемых объектов (и физических величин, описывающих эти состояния), и этот разброс носит вероятностный характер. В настоящее время объективное существование вероятностных процессов в природе считается обоснованным теоретически и экспериментально; в квантовой физике (см. ч. IV, § 10, 11) вообще отрицается однозначность в поведении элементарных частиц и микросистем. Это означает не полное отрицание однозначности (детерминированности) в природе, а лишь ограничение области действия. Однозначность и вероятность являются дуалистическими понятиями; они неотделимы (вероятностный разброс существует вокруг наивероятных значений, входящих в однозначные законы), несводимы (невозможно ограничиться только одним способом описания физических явлений), а их взаимную связь можно заметить почти во всех разделах физики.

Дуализм у элементарных частиц имеет существенно важное значение в формировании свойств физических систем, образованных из этих частиц. Рассматривая известные микрофизические системы, можно заметить, что они образованы в конечном счете из различных частиц. Одинаковые частицы либо не взаимодействуют, либо же отталкиваются друг от друга и физической системы с качественно новыми свойствами не образуют. Так, например, протоны, нейтроны и электроны в отдельности не образуют физических систем, но, соединяясь вместе, образуют ядра и атомы различных веществ. Можно утверждать, что в совокупности одинаковых элементарных частиц всегда происходит простое (аддитивное) сложение их свойств. Только при взаимодействии частиц, обладающих противоположными свойствами, происходит особый (качественный) синтез этих свойств, благодаря чему физические системы приобретают новые свойства. Таким образом, можно утверждать, что появление качественно новых свойств возможно только при взаимодействии суьцественно различных частиц.

Объективный дуализм природы находит свое отражение и в важнейших физических понятиях. Типичным примером являются понятия дискретности и непрерывности. Они несводимы друг к другу; в противном случае можно было бы ограничиться использованием только одного из этих понятий. В истории физики известны попытки исключить дискретность или непрерывность из описания явлений, но они успеха не имели. Они неотделимы друг от друга и неразрывно взаимосвязаны во всех физических явлениях, так как в них обязательно участвуют частицы и поля, вносящие своими фундаментальными свойствами элементы дискретности и непрерывности.

В заключение заметим, что и сама физика как наука развивается на основе взаимодействия двух противоположных частей - теоретической и экспериментальной, которые неотделимы и взаимосвязаны, несводимы друг к другу и взаимодействуют, определяя направление и ход развития физических наук.

Обнаружение корпускулярных свойств света в опытах по фотоэффекту, в опыте Комптона и в ряде других экспериментов не может отменить твердо установленных фактов наличия у света волновых свойств, обнаруживаемых при наблюдении явлений интерференции, дифракции, поляризации. Тот факт, что свет обладает как волновыми, так и корпускулярными свойствами, называют корпускулярно-волновым дуализмом.

Противоположность свойств волн и частиц в классической физике делает неправомерным утверждение, что свет является одновременно и волной, и потоком частиц. Свет не является ни волной, ни потоком частиц. Природа света более сложна и не может быть без внутренних противоречий описана с применением наглядных образов классической физики. Смысл корпускулярноволнового дуализма свойств света заключается в том, что в зависимости от условий эксперимента природа света может быть приближенно описана с применением либо волновых, либо корпускулярных представлений.

Одним из вариантов сведения сложной природы света к более простой является попытка представления фотона в виде ограниченного в пространстве и во времени цуга электромагнитных волн, получившегося в результате сложения большого числа гармонических электромагнитных волн. Если бы такое представление о фотоне соответствовало действительности, то при прохождении пучка света через пластину с полупрозрачным зеркальным покрытием половина каждого цуга проходила бы, а половина отражалась. Разделение каждого фотона на два можно было бы обнаружить по одновременному срабатыванию приборов, поставленных на пути проходящего и отраженного пучков света. Однако опыт показывает, что приборы не срабатывают одновременно. Срабатывает либо первый из них, либо второй в отдельности. Это значит, что каждый фотон не разделяется пластиной с полупрозрачным покрытием на два, а с равной вероятностью либо

отражается, либо проходит сквозь пластину как единое целое.

Ограниченная применимость образов классической физики для описания свойств света выражается не только в том, что для описания результатов одних опытов оказываются пригодными волновые представления, а для других - корпускулярные, но и в условности применения этих образов в каждом случае. Используя корпускулярные представления при описании фотоэлектрического эффекта и комптоновского рассеяния, нельзя забывать о существенных отличиях свойств фотона от свойств частиц в классической физике. Масса покоя фотона равна нулю, скорость его движения в любой инерциальной системе отсчета одинакова, и нет такой системы отсчета, в которой его скорость была бы равна нулю. Рассматривая свет как поток частиц - фотонов, мы должны для определения массы фотона использовать чисто волновую характеристику света - частоту. При исследовании таких волновых явлений, как интерференция и дифракция света, для регистрации интерференционной или дифракционной картины необходимо применять фотоэлемент или фотопластинку, т. е. использовать квантовые свойства света для обнаружения его волновых свойств.

1. Какие закономерности явления фотоэффекта невозможно объяснить на основе волновой теории света?

2. Объясните, почему из волновой теории следует запаздывание фотоэффекта.

3. Одинакова ли кинетическая энергия электронов, освобождаемых из металла под действием фотонов одинаковой частоты?

4. Можно ли наблюдать явление комптоновского рассеяния фотонов видимого света?

5. Можно ли выполнить опыт Боте, используя в качестве источника фотонов лампочку карманного фонаря и счетчики фотонов видимого света?