Механизм возбуждения первичных и вторичных рецепторов. Учение об анализаторах. Структура и функции анализаторов. Механизм возникновения возбуждения в рецепторах. Рецепторный и генераторный потенциалы. По способности к адаптации

Рецепторами называются специальные образования, восприни­мающие и преобразующие энергию внешнего раздражения в специфи­ческую энергию нервного импульса.

Все рецепторы разделяют на экстерорецепторы, принимающие раз­дражения из внешней среды (рецепторы органов слуха, зрения, обоняния, вкуса, осязания), интерорецепторы , реагирующие на раздражения из внутренних органов, и проприорецепторы , воспринимающие раздраже­ния из двигательного аппарата (мышц, сухожилий, суставных сумок).

В зависимости от природы раздражителя , на который они настрое­ны, различают хеморецепторы (рецепторы вкуса и обоняния, хеморецепторы сосудов и внутренних органов), механорецепторы (проприорецепторы двигательной сенсорной системы, барорецепторы сосудов, рецепторы слуховой, вестибулярной, тактильной и болевой сенсорных систем), фоторецепторы (рецепторы зрительной сенсорной системы) и терморецепторы (рецепторы сенсорной системы кожи и внутренних органов).

По характеру связи с раздражителем различают дистантные рецепторы, реагирующие на сигналы от удаленных источников и обусловливающие предупредительные реакции организма (зрительные и слуховые), и контактные, принимающие непосредственные воздействия (тактильные и др.).

По структурным особенностям различают первичные (первично-чувствующие) и вторичные (вторичночувствующие) рецепторы.

Первичные рецепторы – это окончания чувствительных биполярных клеток, тело которых находится вне ЦНС, один отросток подходит к воспринимающей раздражение поверхности, а другой направляется в ЦНС (например, проприорецепторы, тактильные и обонятельные рецепторы).

Вторичные рецепторы представлены специализированными рецепторными клетками, которые расположены между чувствительным нейроном и точкой приложения раздражителя. К ним относят рецепторы вкуса, зрения, слуха, вестибулярного аппарата. В практическом отношении наиболее важное значение имеет психофизиологическая классификация рецепторов по характеру ощущений, возникающих при их раздражении. Согласно этой классификации у человека различают зрительные, слуховые, обонятельные, вкусовые, осязательные рецепторы, терморецепторы, рецепторы положения тела и его частей в пространстве (проприо- и вестибу-лорецепторы) и рецепторы кожи.

Механизм возбуждения рецепторов. В первичных рецепторах энергия внешнего раздражителя непосредственно преобразуется в нервный импульс в самом чувствительном нейроне. В периферическом окончании чувствительных нейронов при действии раздражителя происходит изменение проницаемости мембраны для определенных ионов и ее деполяризация, возникает местное возбуждение – рецепторный потенциал, который, достигнув пороговой величины, обусловливает появление потенциала действия, распространяемого по нервному волокну к нервным центрам.

Во вторичных рецепторах раздражитель вызывает появление рецепторного потенциала в клетке-рецепторе. Ее возбуждение приводит к выделению медиатора в пресинаптической части контакта клетки-рецептора с волокном чувствительного нейрона. Местное возбуждение этого волокна отражается появлением возбуждающего постсинаптического потенциала (ВПСП), или так называемого генераторного потенциала. При достижении порога возбудимости в волокне чувствительного нейрона возникает потенциал действия, несущий информацию в ЦНС. Таким образом, во вторичных рецепторах одна клетка преобразует энергию внешнего раздражителя в рецепторный потенциал, а другая – в генераторный потенциал и потенциал действия. Постсинаптический потенциал первого чувствительного нейрона называют генераторным потенциалом и он приводит к генерации нервных импульсов.

4. Свойства рецепторов

1. Главным свойством рецепторов является их избирательная чувствительность к адекватным раздражителям, к восприятию которых они эволюционно приспособлены (свет для фоторецепторов, звук для рецепторов улитки внутреннего уха и т.п.). Большинство рецепторов настроено на восприятие одного вида (модальности) раздражителя – света, звука и т.п. К таким специфическим для них раздражителям чувствительность рецепторов чрезвычайно высока. Возбудимость рецептора измеряется минимальной величиной энергии адекватного раздражителя, которая необходима для возникновения возбуждения, т.е. порогом возбуждения.

2. Другим свойством рецепторов является очень низкая величина порогов для адекватных раздражителей. Например, в зрительной сенсорной системе фоторецепторы способны возбуждаться одиночным квантом света в видимой части спектра, обонятельные рецепторы – при действии одиночных молекул пахучих веществ и т.п. Возбуждение рецепторов может возникать и при действии неадекватных раздражителей (например, ощущение света в зрительной сенсорной системе при механических и электрических раздражениях). Однако в этом случае пороги возбуждения оказываются значительно более высокими.

Различают абсолютные и разностные (дифференциальные) пороги. Абсолютные пороги измеряются минимально ощущаемой величиной раздражителя. Дифференциальные пороги представляют собой минимальную разницу между двумя интенсивностями раздражителя, которая еще воспринимается организмом (различия в цветовых оттенках, яркости света, степени напряжения мышц, суставных углах и пр.).

3. Фундаментальным свойством всего живого является адаптация, т.е. приспособляемость к условиям внешней среды. Адаптационные процессы, охватывают не только рецепторы, но и все звенья сенсорных
систем.

Адаптация заключается в приспособлении всех звеньев сенсорной системы к длительно действующему раздражителю, а проявляется она в снижении абсолютной чувствительности сенсорной системы. Субъективно адаптация проявляется в привыкании к действию постоянного раздражителя: войдя в прокуренное помещение, человек через несколько минут перестает ощущать запах дыма; человек не ощущает постоянного давления своей одежды на кожу, не замечает непрерывного тиканья часов и т.д.

По скорости адаптации к длительным раздражениям рецепторы подразделяют на быстро и медленно адаптирующиеся. Первые после развития адаптационного процесса практически не сообщают следующему за ними нейрону о длящемся раздражении, у вторых эта информация передается, хотя и в значительно уменьшенном виде (например, так называемые вторичные окончания в мышечных веретенах, которые информируют ЦНС о статических напряжениях).

Адаптация может сопровождаться как понижением, так и повышением возбудимости рецепторов. Так, при переходе из светлого помещения в темное происходит постепенное повышение возбудимости фоторецепторов глаза, и человек начинает различать слабо освещенные предметы – это так называемая темновая адаптация. Однако такая высокая возбудимость рецепторов оказывается чрезмерной при переходе в ярко освещенное помещение («свет режет глаза»). В этих условиях возбудимость фоторецепторов быстро снижается - происходит световая адаптация.

Для оптимального восприятия внешних сигналов нервная система тонко регулирует чувствительность рецепторов в зависимости от потребностей момента путем эфферентной регуляции рецепторов. В частности, при переходе от состояния покоя к мышечной работе чувствительность рецепторов двигательного аппарата заметно возрастает, что облегчает восприятие информации о состоянии опорно- двигательного аппарата (гамма- регуляция) . Механизмы адаптации к различной интенсивности раздражителя могут затрагивать не только сами рецепторы, но и другие образования в органах чувств. Например, при адаптации к различной интенсивности звука происходит изменение подвижности слуховых косточек (молоточка, наковальни и стремячка) в среднем ухе человека.

5. Кодирование информации

Амплитуда и длительность отдельных нервных импульсов (потенциалов действия), поступающих от рецепторов к центрам, при разных Раздражениях остаются постоянными. Однако рецепторы передают в нервные центры адекватную информацию не только о характере, но и о силе дейст­вующего раздражителя. Информация об изменениях интенсивности раз­дражителя кодируется (преобразуется в форму нервного импульсного ко­да) двумя способами:

изменением частоты импульсов, идущих по каждому из нерв­ных волокон от рецепторов к нервным центрам;

изменением числа и распределения импульсов - их количества в пачке (порции), интервалов между пачками, продолжительно­сти отдельных пачек импульсов, числа одновременно возбужден­ных рецепторов и соответствующих нервных волокон (разнооб­разная пространственно-временная картина этой импульсации, богатая информацией, называется паттерном).

Чем больше интенсивность раздражителя, тем больше частота афферентных нервных импульсов и их количество. Это обусловливает­ся тем, что нарастание силы раздражителя приводит к увеличению деполя­ризации мембраны рецептора, что, в свою очередь, вызывает увеличение амплитуды генераторного потенциала и повышение частоты возникающих в нервном волокне импульсов. Между силой раздражения и числом нерв­ных импульсов существует прямо пропорциональная зависимость.

Имеется еще одна возможность кодирования сенсорной информа­ции. Избирательная чувствительность рецепторов к адекватным раз­дражителям уже позволяет отделить различные виды действующей на организм энергии. Однако и в пределах одной сенсорной системы может быть различная чувствительность отдельных рецепторов к разным по характеристикам раздражителям одной и той же модальности (разли­чение вкусовых характеристик разными вкусовыми рецепторами языка, цветоразличение различными фоторецепторами глаза и др.).


По специализации к восприятию определенного вида информации различают:

1. зрительные,

2. слуховые,

3. обонятельные,

4. вкусовые,

5. осязательные рецепторы,

6. термо-, проприо- и вестибулорецепторы (рецепторы положения тела и его частей в пространстве) и

7. рецепторы боли.

В зависимости от локализации все рецепторы подразделяются на:

1. внешние (экстерорецепторы) и

2. внутренние (интерорецепторы).

К экстерорецепторам относятся слуховые, зрительные, обонятельные, вкусовые, осязательные.

К интерорецепторам относятся вестибуло- и проприорецепторы (рецепторы опорно-двигательного аппарата), а также висцерорецепторы (сигнализирующие о состоянии внутренних органов).

По характеру контакта со средой рецепторы делятся на дистантные, получающие информацию на расстоянии от источника раздражения (зрительные, слуховые и обонятельные), и контактные - возбуждающиеся при непосредственном соприкосновении с раздражителем (вкусовые, тактильные).

В зависимости от природы раздражителя, на который они оптимально настроены, рецепторы могут быть разделены на:

1. фоторецепторы,

2. механорецепторы, к которым относятся слуховые, вестибулярные рецепторы, и тактильные рецепторы кожи, рецепторы опорно-двигательного аппарата, барорецепторы сердечно-сосудистой системы;

3. хеморецепторы, включающие рецепторы вкуса и обоняния, сосудистые и тканевые рецепторы;

4. терморецепторы (кожи и внутренних органов, а также центральные термочувствительные нейроны);

5. болевые (ноцицептивные) рецепторы.

Все рецепторы изначально делятся на:

1. первично-чувству ющие и

2. вторично-чувствующие.

К первично-чувствующим относятся рецепторы обоняния, тактильные рецепторы и проприорецепторы. Они характеризуются тем, что преобразование энергии раздражения в энергию нервного импульса происходит у них в первом нейроне сенсорной системы.

К вторично-чувствующим относятся рецепторы вкуса, зрения, слуха, вестибулорецепторы. У них между раздражителем и первым нейроном находится высоко специализированная рецепторная клетка. При этом, первый нейрон возбуждается не непосредственно, а опосредованно через рецепторную (не нервную) клетку.

Общие механизмы возбуждения рецепторов .

При действии стимула на рецепторную клетку происходит преобразование энергии внешнего раздражения в рецепторный сигнал, или трансдукция сенсорного сигнала. Этот процесс включает в себя три основных этапа:

1) взаимодействие стимула, т. е. молекулы пахучего или вкусового вещества (обоняние, вкус), кванта света (зрение) или механической силы (слух, осязание) с рецепторными белковыми молекулами, которые находятся в составе клеточной мембраны рецепторной клетки;

2) возникновение внутриклеточных процессов усиления и передачи сенсорного стимула в пределах рецепторной клетки; и

3) открытие находящихся в мембране рецептора ионных каналов, через которые начинает течь ионный ток, что приводит к деполяризации клеточной мембраны рецепторной клетки и возникновению так называемого рецепторного потенциала .

Рецепторный потенциал – это изменение величины мембранного потенциала, возникающее в рецепторе при действии адекватного раздражителя вследствие изменения ионной проницаемости мембраны рецептора и градуально зависящее от интенсивности стимула.

Под действием стимула белковые молекулы белково-липидного слоя мембраны рецептора изменяют свою конфигурацию, ионные каналы открываются и проводимость мембраны для натрия повышается, возникает локальный ответ или рецепторный потенциал . Когда рецепторный потенциал достигает порогового значения, возникает нервный импульс в виде потенциала действия – распространяющееся возбуждение.

Рецепторный потенциал подчиняется следующим законам:

1. он является локальным, т.е. не распространяется,

2. зависит от силы раздражителя,

3. может суммироваться,

4. может быть деполяризационным, а может гиперполяризационным.

Вторичные рецепторы отличаются от первичных рецепторов механизмом трансформации стимула в нервную активность.

Во вторично-чувствующих рецепторах высокоспециализированная рецепторная клетка связана с окончаниями сенсорного нейрона синаптически. Поэтому, изменение электрического рецепторного потенциала этой клетки под воздействием раздражителя приводит, к выделению квантов медиатора из пресинаптического окончания рецепторной клетки. Этот медиатор (например, ацетилхолин), воздействуя на постсинаптическую мембрану окончания первого нейрона, изменяет ее поляризацию и на ней возникает ВПСП. Этот ВПСП и называют генераторным потенциалом , так как он в дальнейшем электротонически вызывает генерацию импульсного бинарного ответа в виде потенциала действия.

В первичных рецепторах рецепторный и генераторный потенциалы не имеют различий и фактически идентичны.

Итак, преобразование энергии внешнего стимула – кодирование информации и передача информации в сенсорные ядра мозга обеспечивается двумя функционально различными процессами:

1. градуальными аналоговыми рецепторными или генераторными потенциалами, подчиняющимися силовым законам и

2. бинарным потенциалом действия (импульсом), следующим закону “все или ничего”.



При действии стимула на рецепторную мембрану происходит повышение проницаемости для ионов натрия или кальция, ионы поступают внутрь нервного окончания, мембрана деполяризуется и формируется рецепторный потенциал.

Рецепторный потенциал обладает всеми свойствами местного возбуждения (зависит от силы раздражителя, способен к суммации, распространяется с затуханием). Затем рецепторный потенциал с помощью местных токов вызывает генерацию ПД в афферентном волокне. Частота ПД зависит от амплитуды рецепторного потенциала.

Открываются Ca/Na каналы → поступают внутрь клетки по пассивному градиенту концентрации → деполяризация мембраны.

Формирование локальных токов выходящего направления → деполяризация до КУД → генерация ПД.

Механизмы возбуждения вторичночувствующих рецепторов

В рецепторной клетке под действием раздражителя открываются натриевые или кальциевые каналы, что приводит к возникновению рецепторного потенциала. Возбуждение клетки вызывает секрецию медиатора (ацетилхолин, глутаминовая кислота), и на мембране чувствительного нейрона формируется генераторный потенциал.

Генераторный потенциал с помощью местных токов действует на мембрану афферентного волокна, где и возникает ПД

Рецепторныйпотенциал возникает при раздражении рецептора как результат деполяризации и повышения проводимости участка его мембраны, который называется рецептивным. Возникший в рецептивных участках мембраны рецепторный потенциал электротонически распространяется на аксонный холмик рецепторного нейрона, где возникает генераторный потенциал . Возникновение генераторного потенциала в области аксонного холмика объясняется тем, что этот участок нейрона имеет более низкие пороги возбуждения и потенциал действия в нем развивается раньше, чем в других частях мембраны нейрона. Чем выше генераторный потенциал, тем интенсивнее частота разрядов распространяющегося потенциала действия от аксона к другим отделам нервной системы. Следовательно, частота разрядов рецепторного нейрона зависит от амплитуды генераторного потенциала.

Афферентное звено рефлекторной дуги представлено сенсорными нейронами, тела которых находятся в чувствительных ганглиях спинномозговых нервов или соответствующих черепномозговых нервах.

Центральное звено рефлекса представлено интернейронами, которые образуют малые возбуждающие и тормозные нейронные сети.

Эфферентное звено представлено одним (для соматических рефлексов) или двумя (для вегетативных рефлексов) нейронами.

Эффекторный орган в соматических рефлексах - это скелетные мышцы, в вегетативных - гладкие мышцы, железы, кардиомиоциты.

Морфофункциональная характеристика симпатического отдела вегетативной нервной

Системы.

Центры СНС локализованы в торако-люмбальном отделе спинного мозга.

Преганглионарные нейроны лежат в боковых рогах от последнего шейного до 4-го поясничного сегмента спинного мозга (С8, Th1-Th12, L1-L4).

Имеется 2 типа ганглиев в СНС:

1. паравертебральные ганглии являются парными и образуют симпатическую нервную цепочку по обе стороны от спинного мозга (симпатический ствол)

2. превертебральные ганглии - непарные, их три (солнечное сплетение, верхний и нижний брыжеечные узлы).

Медиаторы и реактивные системы

ñ Преганглионарные нейроны - холинергические (Ах).

ñ Постганглионарные нейроны - адренергические (Над),

ñ Передача возбуждения на орган осуществляется с помощью альфа- и бета-адренорецепторов, которые являются метаботропными рецепторами.

При возбуждении альфа-адренорецепторов активируется мембранный фермент фосфолипаза С и образуется два вторичных посредника: инозитолтрифосфат (ИТФ) и диацилглицерол (ДАГ) .

При возбуждении бета-адренорецепторов активируется мембранный фермент аденилатциклаза, что приводит к образованию вторичного посредника ц-АМФ . Следствием активации адренорецепторов может быть изменение как натриевой, так и калиевой проводимости мембраны эффекторных клеток.

Рецептор – это специализированная структура (клетка или окончание нейрона), которая в процессе эволюции приспособилась к восприятию соответствующего раздражителя внешнего или внутренного мира.

Рецепторами называются специальные образования, трансформирующие энергию внешнего раздражения в специфическую энергию нервного импульса.

Классификации:

По положению в организме:

· Экстерорецепторы (экстероцепторы) - расположены на поверхности или вблизи поверхности тела и воспринимают внешние стимулы (сигналы из окружающей среды)

· Интерорецепторы (интероцепторы) - расположены во внутренних органах и воспринимают внутренние стимулы (например, информацию о состоянии внутренней среды организма)

· Проприорецепторы (проприоцепторы) - рецепторы опорно-двигательного аппарата, позволяющие определить, например, напряжение и степень растяжения мышц и сухожилий. Являются разновидностью интерорецепторов.

По способности воспринимать разные стимулы:

· Мономодальные - реагирующие только на один тип раздражителей (например, фоторецепторы - на свет)

· Полимодальные - реагирующие на несколько типов раздражителей (например. многие болевые рецепторы, а также некоторые рецепторы беспозвоночных, реагирующие одновременно на механические и химические стимулы).

По адекватному раздражителю:

· Хеморецепторы - воспринимают воздействие растворенных или летучих химических веществ.

· Механорецепторы - воспринимают механические стимулы (прикосновение, давление, растяжение, колебания воды или воздуха и т. п.)

· Фоторецепторы - воспринимают видимый и ультрафиолетовый свет

· Терморецепторы - воспринимают понижение (холодовые) или повышение (тепловые) температуры

По структурным особенностям различают первичные и вторичные рецепторы.

Первичные рецепторы - это окончания чувствительных биполярных клеток, тело которых находится вне ЦНС, один отросток подходит к воспринимающей раздражение поверхности, а другой направляется в ЦНС. Вторичные рецепторы представлены специализированными рецепторными клетками, которые расположены между чувствительным нейроном и точкой приложения раздражителя.

Свойства

· Избирательность - чувствительность к адекватным раздражителям

· Возбудимость - минимальной величиной энергии адекватного раздражителя, которая необходима для возникновения возбуждения, т.е. порогом возбуждения.

· Низкая величина порогов для адекватных раздражителей

· Адаптация (может сопровождаться как понижением, так и повышением возбудимости рецепторов. Так, при переходе из светлого помещения в темное происходит постепенное повышение возбудимости фоторецепторов глаза, и человек начинает различать слабо освещенные предметы- это так называемая темновая адаптация.)


Первично-чувствующие рецепторы : раздражитель действует на дендрит сенсорного нейрона, изменяется проницаемость клеточной мембраны к ионам (в основном к Na+), образуется локальный электрический потенциал (рецепторный потенциал), который электротонически распространяется вдоль мембраны к аксону. На мембране аксона образуется потенциал действия, передаваемый далее в ЦНС.

Сенсорный нейрон с первично-чувствующим рецептором представляет собой биполярный нейрон, на одном полюсе которого располагается дендрит с ресничкой, а на другом – аксон, передающий возбуждение в ЦНС. Примеры: проприорецепторы, терморецепторы, обонятельные клетки.

Вторично-чувствующие рецепторы : в них раздражитель действует на рецепторную клетку, в ней возникает возбуждение (рецепторный потенциал). На мембране аксона рецепторный потенциал активирует выделение нейромедиатора в синапс, в результате чего на постсинаптической мембране второго нейрона (чаще всего биполярного) образуется генераторный потенциал, который и приводит к образованию потенциала действия на соседних участках постсинаптической мембраны. Далее этот потенциал действия передается в ЦНС. Примеры: волосковые клетки уха, вкусовые рецепторы, фоторецепторы глаза.

При действии стимула на рецептор происходит изменение пространственной структуры белковых молекул, встроенных в мембрану рецепторной клетки. Это приводит к изменению проницаемости мембраны главным образом для ионов натрия и в некоторой степени калия. В результате возникает ионный ток, который изменяет потенциал покоя и вызывает генерацию рецепторного потенциала, который является первичным электрическим ответом рецептора на действие стимула.

В первично чувствующих рецепторах рецепторный потенциал достигает критического уровня и приводит к генерации распространяющихся потенциалов действия, которые без затухания передаются по афферентным нервным волокнам в вышележащие уровни центральной нервной системы.

Во вторично чувствующих рецепторах рецепторный потенциал вызывает выделение медиатора (ацетилхолина) из пресинаптического окончания рецепторной клетки. Медиатор воздействует на постсинаптическую мембрану чувствительного нейрона и вызывает ее деполяризацию, т.е. развивается постсинаптический потенциал. Постсинаптический потенциал первого чувствительного нейрона называется генераторным потенциалом. В отличие от потенциалов действия, генерация которых подчиняется закону «все или ничего», величина генераторного потенциала зависит от амплитуды рецепторного потенциала и пропорциональна величине стимула. Когда генераторный потенциал достигает определенного критического уровня, он формирует на чувствительном нервном окончании серию распространяющихся нервных импульсов. Таким образом, в первично чувствующих рецепторах рецепторный потенциал является в тоже время и генераторным потенциалом, а во вторично чувствующих рецепторный потенциал и генераторный потенциал разобщены.

Характеристика рецепторов

Рецепторы обладают способностью не только воспринимать, но и усиливать сигнал за счет собственной внутренней энергии – энергии метаболических процессов. Следовательно, количество энергии, затрачиваемое рецепторами на восприятие и кодирование его в серии нервных импульсов, может значительно отличаться от энергии стимула.

Деятельность разнообразных рецепторных аппаратов направлена, в конце концов, на обеспечение эффективной работы сенсорных систем. Это предполагает, несмотря на вариативность в строении и механизмах работы конкретных рецепторов, выделить особенности, характерные для всех видов.

1. Ритмическая активность . Многим рецепторам свойственна ритмическая активность в состоянии покоя – спонтанная или фоновая импульсация. Фоновая активность позволяет рецепторам оценивать не только возбуждающие, но и тормозные воздействия, т. е. передавать сведения о сигнале не только в виде учащения, но и в виде урежения потока импульсов. Кроме того, фоновая импульсация позволяет поддерживать высокую возбудимость рецепторов.

2. Адаптация рецепторов . Это процесс уменьшения активности рецепторов по мере действия раздражителя с постоянными физическими характеристиками. Наиболее быстро адаптирующиеся рецепторы – механорецепторы кожи. Практически отсутствует способность к адаптации у проприорецепторов.

При длительном неизменном раздражении адаптация проявляется в снижении, а затем в полном исчезновении рецепторного потенциала. По своему характеру адаптация может быть полной или неполной, а также быстрой и медленной. Как правило, быстрая адаптация бывает полной, а медленная – неполной. Исчезновение рецепторного потенциала при адаптации рецептора к действию постоянного стимула приводит к потере определённой доли информации. Но рецептор сохраняет способность мгновенно реагировать на любое изменение параметров раздражения. Благодаря способности рецепторов к адаптации значительная доля информации не достигает сознания и таким образом не перегружает высшие отделы центральной нервной системы избыточной информацией.

3. Направленная чувствительность. У многих рецепторов максимальное возбуждение отмечается при определенном направлении раздражающего возбуждения, а при другом направлении рецептор возбуждается минимально или тормозится.

4. Эфферентная регуляция. Рецепторы находятся под тоническим тормозным влиянием со стороны вышележащих нервных структур. Это торможение стабилизирует мембранный потенциал около определенной величины, благодаря чему генераторный потенциал не достигает критического уровня, и потенциалы действия в рецепторе не возникают. Роль направленной чувствительности состоит в формировании на высших этажах сенсорной системы специализированных нейронов-детекторов направленного движения.

Вопросы и задания для самоконтроля

1. Дайте определение понятия «рецептор», назовите функции рецепторов.

2. Рассмотрите различные классификации рецепторов.

3. Каков механизм возбуждения первично и вторично чувствующих рецепторов? Приведите примеры первично и вторично чувствующих рецепторов.

4. Чем отличаются друг от друга быстро и медленно адaптирующиеся рецепторы?

5. К какому виду рецепторов в рамках различных классификаций относятся зрительные, слуховые, обонятельные, вкусовые рецепторы, рецепторы мышц и другие?

6. Какие процессы лежат в основе возникновения рецепторного потенциaла?

7. В чем разница между рецепторным потенциалом, генераторным потенциaлом и потенциaлом действия?

8. Назовите характерные особенности рецепторных элементов сенсорных систем.