Свинец и висмут – самые тяжелые стабильные элементы. Результаты поиска по \"стабильные элементы\"

Сверхтяжелые элементы на островке устойчивости

Теоретическое и экспериментальное изучение устойчивости ядра дало советским физикам повод для пересмотра применявшихся до сих пор методов получения тяжелых трансуранов . В Дубне решили пойти новыми путями и взять в качестве мишени свинец и висмут .

Ядро, как и атом в целом, имеет оболочечное строение . Особой устойчивостью отличаются атомные ядра, содержащие 2-8-20- 28-50-82-114-126-164 протонов (то есть ядра атомов с таким порядковым номером) и 2-8-20-28-50-82-126-184-196- 228-272-318 нейтронов, вследствие законченного строения их оболочек. Только недавно удалось подтвердить эти воззрения расчетами с помощью ЭВМ.

Такая необычная устойчивость бросилась в глаза, прежде всего, при изучении распространенности некоторых элементов в космосе. Изотопы , обладающие этими ядерными числами, называют магическими. Изотоп висмута 209 Bi, имеющий 126 нейтронов, представляет такой магический нуклид. Сюда относятся также изотопы кислорода, кальция, олова . Дважды магическими являются: для гелия - изотоп 4 Не (2 протона, 2 нейтрона), для кальция - 48 Са (20 протонов, 28 нейтронов), для свинца - 208 Pb (82 протона, 126 нейтронов). Они отличаются совершенно особой прочностью ядра.

Используя источники ионов нового типа и более мощные ускорители тяжелых ионов - в Дубне были спарены агрегаты У-200 и У-300, группа Г. Н. Флёрова и Ю. Ц. Оганесяна вскоре стала располагать потоком тяжелых ионов с необычайной энергией. Чтобы достичь слияния ядер, советские физики выстреливали ионами хрома с энергией 280 МэВ в мишени из свинца и висмута. Что могло получиться? В начале 1974 года атомщики в Дубне зарегистрировали при такой бомбардировке 50 случаев, указывающих на образование 106-го элемента , который, однако, распадается уже через 10 -2 с. Эти 50 атомных ядер образовались по схеме:

208 Pb + 51 Cr = 259 X

Немного позднее Гиорсо и Сиборг из лаборатории Лоуренса в Беркли сообщили, что они синтезировали изотоп нового, 106 -го, элемента с массовым числом 263 путем обстрела калифорния-249 ионами кислорода в аппарате Super-HILAC.

Какое имя будет носить новый элемент? Откинув прежние разногласия, обе группы в Беркли и Дубне, соперничающие в научном соревновании, пришли на этот раз к единому мнению. О названиях говорить еще рано, сказал Оганесян. А Гиорсо дополнил, что решено воздержаться от всяких предложений о наименовании 106-го элемента вплоть до прояснения ситуации.

К концу 1976 года дубнинская лаборатория ядерных реакций закончила серию опытов по синтезу 107-го элемента; в качестве исходного вещества дубнинским "алхимикам" послужил "магический " висмут-209. При обстреле ионами хрома с энергией 290 МэВ он превращался в изотоп 107 -го элемента:

209 Bi + 54 Cr = 261 X + 2n

107-й элемент самопроизвольно распадается с периодом полураспада 0,002 с и, кроме того, излучает альфа-частицы.

Найденные для 106- и 107-го элементов периоды полураспада 0,01 и 0,002 с заставили насторожиться. Ведь они оказались на несколько порядков больше, чем предсказывали расчеты ЭВМ. Быть может, на 107-й элемент уже заметно влияла близость последующего магического числа протонов и нейтронов - 114, повышающая устойчивость?
Если это так, то была надежда получить и долгоживущие изотопы 107-го элемента, например обстрелом берклия ионами неона. Расчеты показали, что образующийся по этой реакции изотоп, богатый нейтронами, должен был бы обладать периодом полураспада, превышающим 1 с. Это позволило бы изучить химические свойства 107-го элемента - экарения .

Самый долгоживущий изотоп первого трансурана, элемента 93 - нептуний-237,- обладает периодом полураспада 2 100 000 лет; самый устойчивый изотоп 100-го элемента - фермий-257- только 97 дней. Начиная с 104-го элемента периоды полураспада составляют лишь доли секунды. Поэтому, казалось, что нет абсолютно никакой надежды обнаружить эти элементы. Для чего же нужны дальнейшие исследования?

Альберт Гиорсо, ведущий специалист США по трансуранам, высказался однажды в этой связи: "Причиной для продолжения поисков дальнейших элементов является просто-напросто удовлетворение человеческого любопытства - а что же происходит за следующим поворотом улицы? " Однако это, конечно, не просто научное любопытство. Гиорсо давал все же понять, как важно продолжение такого фундаментального исследования.

В 60-е годы теория магических ядерных чисел приобретала все большее значение. В "море неустойчивости" ученые отчаянно пытались найти спасительный "островок относительной устойчивости ", на который могла бы твердо опереться нога исследователя атома. Хотя этот островок до сих пор еще не открыт, "координаты" его известны: элемент 114, экасвинец , считается центром большой области устойчивости. Изотоп-298 элемента 114 уже давно является особым предметом научных споров, ибо, имея 114 протонов и 184 нейтрона, он представляет собой одно из тех дважды магических атомных ядер, которым предсказывают длительное существование. Однако что же означает длительное существование?

Предварительные расчеты показывают: период полураспада с выделением альфа-частиц колеблется от 1 до 1000 лет, а по отношению к самопроизвольному делению - от 10 8 до 10 16 лет. Такие колебания, как указывают физики, объясняются приближенностью "компьютерной химии". Весьма обнадеживающие значения периодов полураспада предсказывают для следующего островка устойчивости - элемента 164, двисвинца . Изотоп 164-го элемента с массовым числом 482 - также дважды магический: его ядро образуют 164 протона и 318 нейтронов.

Науку интересуют и просто магические сверхтяжелые элементы , как, например, изотоп-294 элемента 110 или изотоп-310 элемента 126, содержащие по 184 нейтрона. Диву даешься, как исследователи вполне серьезно жонглируют этими воображаемыми элементами, будто они уже существуют. Из ЭВМ извлекаются все новые данные и сейчас уже определенно известно, какими свойствами - ядерными, кристаллографическими и химическими - должны обладать эти сверхтяжелые элементы . В специальной литературе накапливаются точные данные для элементов, которые люди, быть может, откроют лет через 50.

В настоящее время атомщики путешествуют по морю неустойчивости в ожидании открытий. За их спинами осталась твердая земля: полуостров с естественными радиоактивными элементами, отмеченный возвышенностями тория и урана, и далеко простирающаяся твердая земля со всеми прочими элементами и вершинами свинца, олова и кальция .
Отважные мореплаватели уже давно находятся в открытом море. На неожиданном месте они нашли отмель: открытые 106 и 107-й элементы устойчивее, чем ожидалось.

В последние годы мы долго плыли по морю неустойчивости, рассуждает Г. Н. Флёров, и вдруг, в последний момент, почувствовали землю под ногами. Случайная подводная скала? Либо песчаная отмель долгожданного островка устойчивости? Если правильно второе, то у нас есть реальная возможность создать новую периодическую систему из устойчивых сверхтяжелых элементов , обладающих поразительными свойствами.

После того, как стала известна гипотеза об устойчивых элементах вблизи порядковых номеров 114, 126, 164, исследователи всего мира набросились на эти "сверхтяжелые " атомы. Некоторые из них, с предположительно большими периодами полураспада, надеялись обнаружить на Земле или в Космосе, по крайней мере в виде следов. Ведь при возникновении нашей Солнечной системы эти элементы так же существовали, как и все прочие.

Следы сверхтяжелых элементов - что следует под этим понимать? В результате своей способности самопроизвольно делиться на два ядерных осколка с большой массой и энергией эти трансураны должны были бы оставить в находящейся по соседству материи отчетливые следы разрушения.
Подобные следы можно увидеть в минералах под микроскопом после их травления. С помощью такого метода следов разрушения можно в настоящее время проследить существование давно погибших элементов. Из ширины оставленных следов можно оценить и порядковый номер элемента - ширина трека пропорциональна квадрату заряда ядра.
"Живущие" еще сверхтяжелые элементы надеются также выявить, исходя из того, что они многократно испускают нейтроны. При самопроизвольном процессе деления эти элементы испускают до 10 нейтронов.

Следы сверхтяжелых элементов искали в марганцевых конкрециях из глубин океана, а также в водах после таяния ледников полярных морей. До сих пор безрезультатно. Г. Н. Флёров с сотрудниками исследовал свинцовые стекла древней витрины XIV века, лейденскую банку XIX века, вазу из свинцового хрусталя XVIII века.
Сначала несколько следов самопроизвольного деления указали на экасвинец - 114-й элемент. Однако, когда дубнинские ученые повторили свои измерения с высокочувствительным детектором нейтронов в самом глубоком соляном руднике Советского Союза, то положительного результата не получили. На такую глубину не могло проникнуть космическое излучение, которое, по-видимому, вызвало наблюдавшийся эффект.

В 1977 году профессор Флёров предположил, что он наконец обнаружил "сигналы нового трансурана " при исследовании глубинных термальных вод полуострова Челекен в Каспийском море.
Однако число зарегистрированных случаев было слишком мало для однозначного отнесения. Через год группа Флёрова зарегистрировала уже 150 спонтанных делений в месяц. Эти данные получены при работе с ионообменником, заполненным неизвестным трансураном из термальных вод. Флёров оценил период полураспада присутствовавшего элемента, который он еще не смог выделить, миллиардами лет.

Другие исследователи пошли иными путями. Профессор Фаулер и его сотрудники из Бристольского университета предприняли эксперименты с аэростатами на большой высоте. С помощью детекторов малых количеств ядер были выявлены многочисленные участки с зарядами ядер, превышающими 92. Английские исследователи считали, что один из следов указывает даже на элементы 102...108. Позднее они внесли поправку: неизвестный элемент имеет порядковый номер 96 (кюрий ).

Как же попадают эти сверхтяжелые частички в стратосферу земного шара? До настоящего времени выдвинуто несколько теорий. Согласно им, тяжелые атомы должны возникать при взрывах сверхновых звезд либо при других астрофизических процессах и достигать Земли в виде космического излучения или пыли - но только через 1000 - 1 000 000 лет. Эти космические осадки в настоящее время ищут как в атмосфере, так и в глубинных морских отложениях.

Значит, сверхтяжелые элементы могут находиться в космическом излучении? Правда, по оценке американских ученых, предпринявших в 1975 году эксперимент "Скайлэб", такая гипотеза не подтвердилась. В космической лаборатории, облетавшей Землю, установили детекторы, поглощающие тяжелые частички из космоса; обнаружены были лишь треки известных элементов .
Лунная пыль, доставленная на Землю после первой посадки на Луну в 1969 году, не менее тщательно обследовалась на присутствие сверхтяжелых элементов. Когда нашли следы "долгоживущих" частичек до 0,025 мм, некоторые исследователи сочли, что их можно приписать элементам 110 - 119.

Аналогичные результаты дали исследования аномального изотопного состава благородного газа ксенона, содержащегося в различных образцах метеоритов. Физики высказали мнение, что этот эффект можно объяснить лишь существованием сверхтяжелых элементов.
Советские ученые в Дубне, которые проанализировали 20 кг метеорита Алленде, упавшего в Мексике осенью 1969 года, в результате трехмесячного наблюдения смогли обнаружить несколько спонтанных делений.
Однако после того, как было установлено, что "природный" плутоний-244 , некогда являвшийся составной частью нашей Солнечной системы, оставляет совершенно сходные следы, интерпретацию стали проводить осторожнее.

На исходе второго тысячелетия академик Виталий Лазаревич Гинзбург составил список из тридцати проблем физики и астрофизики, которые он считал наиболее важными и интересными (см. «Наука и жизнь» № 11, 1999 г.). В этом списке под № 13 указана задача отыскания сверхтяжёлых элементов. Тогда, 12 лет назад, академик с огорчением отметил, что «существование в космических лучах долгоживущих (речь идёт о миллионах лет) трансурановых ядер пока подтверждено не было». Сегодня следы таких ядер обнаружены. Это даёт надежду открыть наконец остров Стабильности сверхтяжёлых ядер, существование которого предсказал когда-то физик-ядерщик Георгий Николаевич Флёров.

Вопрос, существуют ли элементы тяжелее урана-92 (238 U - его стабильный изотоп), долгое время оставался открытым, так как в природе они не наблюдались. Считалось, что стабильных элементов с атомным номером больше 180 нет: мощный положительный заряд ядра разрушит внутренние уровни электронов тяжёлого атома. Однако довольно скоро выяснилось, что стабильность элемента определяется устойчивостью его ядра, а не оболочки. Стабильны ядра с чётным числом протонов Z и нейтронов N, среди которых особенно выделяются ядра с так называемым магическим числом протонов или нейтронов - 2, 8, 20, 28, 50, 82, 126 - это, например, олово, свинец. И наиболее стабильны «дважды магические ядра», у которых число и нейтронов, и протонов - магическое, скажем, гелий и кальций. Таков изотоп свинца 208 Pb: у него Z = 82, N = 126. Устойчивость элемента чрезвычайно сильно зависит от соотношения числа протонов и нейтронов в его ядре. Например, свинец со 126-ю нейтронами стабилен, а другой его изотоп, в ядре которого на один нейтрон больше, распадается за три с лишним часа. Но, отмечал В. Л. Гинзбург, теория предсказывает, что некий элемент Х с числом протонов Z = 114 и нейтронов N = 184, то есть с массовым атомным числом А = Z + N = 298, должен жить примерно 100 миллионов лет.

Сегодня искусственно получено множество элементов вплоть до 118-го включительно - 254 Uuo. Это самый тяжёлый неметалл, предположительно - инертный газ; его условные названия унуноктий (оно образовано из корней латинских числительных - 1, 1, 8), эка-радон и московий Mw. Все искусственные элементы когда-то существовали на Земле, но с течением времени распались. Например, плутоний-94 имеет 16 изотопов, и только у 244 Pu период полураспада Т ½ = 7,6·10 7 лет; у нептуния-93 12 изотопов и у 237 Np Т ½ = 2,14·10 6 лет. Эти самые длительные периоды полураспада среди всех изотопов данных элементов гораздо меньше возраста Земли - (4,5–5,5)·10 9 . Ничтожные следы нептуния, которые находят в урановых рудах, - продукты ядерных реакций под действием нейтронов космического излучения и спонтанного деления урана, а плутония - следствие бета-распада нептуния-239.

Элементы, пропавшие за время существования Земли, получают двумя способами. Во-первых, в ядро тяжёлого элемента можно вогнать лишний нейтрон. Там он претерпевает бета-распад, образуя протон, электрон и электронное антинейтрино: n 0 → p + e – + v e . Заряд ядра увеличится на единицу - возникнет новый элемент. Так получали искусственные элементы вплоть до фермия-100 (его изотоп 257 Fm имеет период полураспада 100 лет).

Ещё более тяжёлые элементы создают в ускорителях, которые разгоняют и сталкивают ядра, например золота (см. «Наука и жизнь» № 6, 1997 г.). Именно так в лаборатории ядерных реакций Объединённого института ядерных исследований (ОИЯИ, г. Дубна) и получили 117-й и 118-й элементы. Причём теория предсказывает, что далеко за пределами известных ныне тяжёлых радиоактивных элементов должны существовать стабильные сверхтяжёлые ядра. Российский физик Г. Н. Флёров изобразил систему элементов в виде символического архипелага, где стабильные элементы окружены морем короткоживущих изотопов, которые, возможно, так никогда и не будут обнаружены. На главном острове архипелага высятся пики наиболее стабильных элементов - Кальция, Олова и Свинца, за проливом Радиоактивности лежит остров Тяжёлых ядер с пиками Урана, Нептуния и Плутония. А ещё дальше должен располагаться таинственный остров Стабильности сверхтяжёлых элементов, подобных уже упомянутому - Х-298.

Несмотря на все успехи экспериментальной и теоретической физики, остаётся открытым вопрос: существуют ли в природе сверхтяжёлые элементы, или же они - чисто искусственные, рукотворные вещества, подобные синтетическим материалам - капрону, нейлону, лавсану, - природой никогда не создававшимся?

Условия для образования таких элементов в природе есть. Они создаются в недрах пульсаров и при взрывах сверхновых звёзд. Потоки нейтронов в них достигают огромной плотности - 10 38 n 0 /м 2 и способны порождать сверхтяжёлые ядра. Они разлетаются в космосе в потоке межгалактических космических лучей, но их доля чрезвычайно мала - всего несколько частиц на квадратный метр в год. Поэтому возникла мысль использовать природный детектор-накопитель космического излучения, в котором сверхтяжёлые ядра должны оставить специфический, легко узнаваемый след. Такими детекторами с успехом послужили метеориты.

Метеорит - кусок породы, вырванный какой-то космической катастрофой из материнской планеты, - путешествует в космосе сотни миллионов лет. Его непрерывно «обстреливают» космические лучи, которые на 90% состоят из ядер водорода (протонов), на 7% - из ядер гелия (двух протонов) и на 1% - из электронов. На оставшиеся 2% приходятся другие частицы, среди которых могут быть и сверхтяжёлые ядра.

Исследователи из Физического института им. П. Н. Лебедева (ФИАН) и Института геохимии и аналитической химии им. В. И. Вернадского (ГЕОХИ РАН) изучают два палласита - железоникелиевые метеориты с вкраплениями оливина (группа полупрозрачных минералов, в которых к двуокиси кремния SiO 4 присоединены в разных пропорциях Mg 2 , (Mg, Fe) 2 и (Mn, Fe) 2 ; прозрачный оливин называется хризолитом). Возраст этих метеоритов - 185 и 300 миллионов лет.

Тяжёлые ядра, пролетая сквозь кристалл оливина, повреждают его решётку, оставляя в ней свои следы - треки. Они становятся видны после химической обработки кристалла - травления. А поскольку оливин полупрозрачен, треки эти можно наблюдать и изучать в микроскоп. По толщине трека, его длине и форме можно судить о заряде и атомной массе ядра. Исследования сильно осложняет то, что кристаллы оливина имеют размеры порядка нескольких миллиметров, а трек тяжёлой частицы гораздо длиннее. Поэтому о величине её заряда приходится судить по косвенным данным - скорости травления, уменьшению толщины трека и пр.

Работы по отысканию следов сверхтяжёлых частиц с острова стабильности назвали «Проект Олимпия». В рамках этого проекта получены сведения примерно о шести тысячах ядер с зарядом более 55 и трёх ультратяжёлых ядрах, заряды которых лежат в интервале от 105 до 130. Все характеристики треков этих ядер измерены комплексом высокоточной аппаратуры, созданным в ФИАНе. Комплекс в автоматическом режиме распознаёт треки, определяет их геометрические параметры и, экстраполируя данные измерений, находит предположительную длину трека до его остановки в массиве оливина (напомним, что реальный размер его кристалла - несколько миллиметров).

Полученные экспериментальные результаты подтверждают реальность существования в природе стабильных сверхтяжёлых элементов.

ЕСТЬ ЛИ ПРЕДЕЛ
ПЕРИОДИЧЕСКОЙ ТАБЛИЦЫ
Д.И.МЕНДЕЛЕЕВА?

ОТКРЫТИЕ НОВЫХ ЭЛЕМЕНТОВ

П роблема систематизации химических элементов привлекла к себе пристальное внимание в середине XIX в., когда стало ясно, что многообразие окружающих нас веществ является результатом разных сочетаний сравнительно малого числа химических элементов.

В хаосе элементов и их соединений великий русский химик Д.И.Менделеев первым навел порядок, создав свою периодическую таблицу элементов.

1 марта 1869 г. считается днем открытия периодического закона, когда Менделеев сообщил о нем научному сообществу. Известные в то время 63 элемента ученый разместил в своей таблице таким образом, что главные свойства этих элементов и их соединений менялись периодически по мере увеличения их атомной массы. Наблюдаемые изменения свойств элементов в горизонтальном и вертикальном направлениях таблицы следовали строгим правилам. Например, ярко выраженный у элементов Iа группы металлический (основный) характер с увеличением атомной массы убывал по горизонтали таблицы и возрастал по вертикали.

Опираясь на открытый закон, Менделеев предсказал свойства нескольких еще не открытых элементов и их место в периодической таблице. Уже в 1875 г. был открыт «экаалюминий» (галлий), еще через четыре года – «экабор» (скандий), а в 1886 г. – «экасилиций» (германий). В последующие годы таблица Менделеева служила и до сих пор служит ориентиром в поисках новых элементов и предвидении их свойств.

Однако ни сам Менделеев, ни его современники не могли ответить на вопрос, в чем причины периодичности свойств элементов, существует ли и где проходит граница периодической системы. Менделеев предчувствовал, что причина представленной им взаимосвязи между свойствами и атомной массой элементов кроется в сложности самих атомов.

Лишь спустя много лет после создания периодической системы химических элементов в работах Э.Резерфорда, Н.Бора и других ученых было доказано сложное строение атома. Последующие достижения атомной физики позволили решить многие неясные проблемы периодической системы химических элементов. Прежде всего оказалось, что место элемента в периодической таблице определяется не атомной массой, а зарядом ядра. Стала понятной природа периодичности химических свойств элементов и их соединений.

Атом стали рассматривать как систему, в центре которой находится положительно заряженное ядро, а вокруг него вращаются отрицательно заряженные электроны. При этом электроны группируются в околоядерном пространстве и движутся по определенным орбитам, входящим в электронные оболочки.

Все электроны атома принято обозначать с помощью чисел и букв. Согласно этому обозначению главные квантовые числа 1, 2, 3, 4, 5, 6, 7 относятся к электронным оболочкам, а буквы s , p , d , f , g – к подоболочкам (орбитам) каждой оболочки. Первая оболочка (считая от ядра) имеет только s -электроны, вторая может иметь s - и p - электроны, третья – s -, p - и d -электроны, четвертая – s -,
p -, d - и f - электроны и т.д.

Каждая оболочка может вместить вполне определенное число электронов: первая – 2, вторая – 8, третья – 18, четвертая и пятая – по 32. Этим определяется число элементов в периодах таблицы Менделеева. Химические свойства элементов обусловлены строением внешней и предвнешней электронных оболочек атомов, т.е. тем, сколько электронов они содержат.

Ядро атома состоит из положительно заряженных частиц – протонов и электрически нейтральных частиц – нейтронов, часто называемых одним словом – нуклоны. Порядковый номер элемента (его место в периодической таблице) определяется числом протонов в ядре атома данного элемента. Массовое число А атома элемента равно сумме чисел протонов Z и нейтронов N в ядре: A = Z + N . Атомы одного и того же элемента с разным числом нейтронов в ядре являются его изотопами.

Химические свойства разных изотопов одного и того же элемента не отличаются друг от друга, а ядерные – изменяются в широких пределах. Это проявляется прежде всего в стабильности (или нестабильности) изотопов, которая существенно зависит от соотношения числа протонов и нейтронов в ядре. Легкие стабильные изотопы элементов обычно характеризуются равным числом протонов и нейтронов. С ростом заряда ядра, т. е. порядкового номера элемента в таблице, это соотношение меняется. У стабильных тяжелых ядер нейтронов почти в полтора раза больше, чем протонов.

Как и атомные электроны, нуклоны также образуют оболочки. С увеличением числа частиц в ядре последовательно заполняются протонные и нейтронные оболочки. Ядра с полностью заполненными оболочками являются самыми стабильными. Например, очень устойчивой ядерной структурой характеризуется изотоп свинца Pb-208, который имеет заполненные оболочки протонов (Z = 82) и нейтронов (N = 126).

Подобные заполненные ядерные оболочки аналогичны заполненным электронным оболочкам атомов инертных газов, представляющих отдельную группу в периодической таблице. Стабильные ядра атомов с полностью заполненными протонными или нейтронными оболочками содержат определенные «магические» числа протонов или нейтронов: 2, 8, 20, 28, 50, 82, 114, 126, 184. Таким образом, атомам элементов в целом, как и по химическим свойствам, присуща также периодичность и ядерных свойств. Среди разных сочетаний числа протонов и нейтронов в ядрах изотопов (четно-четных; четно-нечетных; нечетно-четных; нечетно-нечетных) именно ядра, содержащие четное число протонов и четное число нейтронов, отличаются наибольшей устойчивостью.

Природа сил, удерживающих в ядре протоны и нейтроны, пока недостаточно ясна. Полагают, что между нуклонами действуют очень большие гравитационные силы притяжения, которые способствуют увеличению стабильности ядер.

К середине тридцатых годов прошлого столетия периодическая таблица была разработана настолько, что показывала положение уже 92 элементов. Под порядковым номером 92 был уран – последний из найденных на Земле еще в 1789 г. естественных тяжелых элементов. Из 92 элементов таблицы только элементы с порядковыми номерами 43, 61, 85 и 87 в тридцатые годы не были точно установлены. Они были открыты и изучены позже. Редкоземельный элемент с атомным номером 61 – прометий – был обнаружен в малых количествах в рудах как продукт самопроизвольного распада урана. Анализ атомных ядер недостающих элементов показал, что все они радиоактивны, причем из-за коротких периодов их полураспада они не могут существовать на Земле в заметных концентрациях.

В связи с тем, что последним тяжелым элементом, найденным на Земле, был элемент с атомным номером 92, можно было бы предположить, что он и является естественным пределом периодической таблицы Менделеева. Однако достижения атомной физики указали путь, по которому оказалось возможным перешагнуть через поставленную природой границу периодической таблицы.

Элементы с бо льшими атомными номерами, чем у урана, называют трансурановыми. По своему происхождению эти элементы являются искусственными (синтетическими). Их получают путем ядерных реакций трансформации элементов, встречающихся в природе.

Первую попытку, хотя не совсем удачную, открыть трансурановую область периодической системы предпринял итальянский физик Энрико Ферми в Риме вскоре после того, как было доказано существование нейтронов. Но лишь в 1940–1941 гг. успеха в открытии первых двух трансурановых элементов, а именно нептуния (атомный номер 93) и плутония (атомный номер 94), добились американские ученые из Калифорнийского университета в Беркли.

В основе методов получения трансурановых элементов лежит несколько видов ядерных реакций.

Первый вид – нейтронный синтез. В этом методе в ядрах тяжелых атомов, облученных нейтронами, происходит превращение одного из нейтронов в протон. Реакция сопровождается так называемым электронным распадом ( – -распадом) – образованием и выбросом из ядра с огромной кинетической энергией отрицательно заряженной – -частицы (электрона). Реакция возможна при избытке в ядре нейтронов.

Противоположной реакцией является превращение протона в нейтрон с испусканием положительно заряженной + -частицы (позитрона). Подобный позитронный распад ( + -распад) наблюдается при недостатке в ядрах нейтронов и ведет к уменьшению заряда ядра, т.е. к уменьшению атомного номера элемента на единицу. Аналогичный эффект достигается, когда протон превращается в нейтрон за счет захвата ближайшего орбитального электрона.

Новые трансурановые элементы вначале были получены из урана по методу нейтронного синтеза в ядерных реакторах (как продукты взрыва ядерных бомб), а позже синтезированы с помощью ускорителей частиц – циклотронов.

Второй вид – реакции между ядрами атомов исходного элемента («мишени») и ядрами атомов легких элементов (изотопов водорода, гелия, азота, кислорода и других), используемых в качестве бомбардирующих частиц. Протоны в ядрах «мишени» и «снаряда» имеют положительный электрический заряд и испытывают сильное отталкивание при приближении друг к другу. Чтобы преодолеть силы отталкивания, образовать составное ядро, необходимо обеспечить атомы «снаряда» очень большой кинетической энергией. Такой огромной энергией бомбардирующие частицы запасаются в циклотронах. Образовавшееся промежуточное составное ядро обладает довольно большой избыточной энергией, которая должна быть высвобождена для стабилизации нового ядра. В случае тяжелых трансурановых элементов эта избыточная энергия, когда не происходит деления ядер, рассеивается путем испускания -лучей (высокоэнергетического электромагнитного излучения) и «испарения» нейтронов из возбужденных ядер. Ядра атомов нового элемента являются радиоактивными. Они стремятся достигнуть более высокой устойчивости путем изменения внутреннего строения через радиоактивный электронный – -распад либо -распад и самопроизвольное деление. Такие ядерные реакции присущи наиболее тяжелым атомам элементов с порядковыми номерами выше 98.

Реакция спонтанного, самопроизвольного деления ядер атомов радиоактивных элементов была открыта нашим соотечественником Г.Н.Флеровым и чехом К.А.Петржаком в Объединенном институте ядерных исследований (ОИЯИ, г. Дубна) в опытах с ураном-238. Увеличение порядкового номера приводит к быстрому уменьшению времени полураспада ядер атомов радиоактивных элементов.

В связи с этим фактом выдающийся американский ученый Г.Т.Сиборг, лауреат Нобелевской премии, участвовавший в открытии девяти трансурановых элементов, полагал, что открытие новых элементов, вероятно, закончится приблизительно на элементе с порядковым номером 110 (по свойствам аналогичном платине). Эта мысль о границе периодической таблицы была высказана в 60-е годы прошлого столетия с оговоркой: если не будут открыты новые методы синтеза элементов и существование пока неизвестных областей устойчивости самых тяжелых элементов. Некоторые из таких возможностей были выявлены.

Третий вид ядерных реакций синтеза новых элементов – реакции между высокоэнергетическими ионами со средней атомной массой (кальция, титана, хрома, никеля) в качестве бомбардирующих частиц и атомами стабильных элементов (свинца, висмута) в качестве «мишени» вместо тяжелых радиоактивных изотопов. Этот путь получения более тяжелых элементов был предложен в 1973 г. нашим ученым Ю.Ц.Оганесяном из ОИЯИ и успешно использован в других странах. Главное достоинство предложенного метода синтеза заключалось в образовании менее «горячих» составных ядер при слиянии ядер «снаряда» и «мишени». Высвобождение избыточной энергии составных ядер в этом случае происходило в результате «испарения» существенно меньшего числа нейтронов (одного или двух вместо четырех или пяти).

Необычная ядерная реакция между ионами редкого изотопа Са-48, ускоренными в циклотроне
У-400, и атомами актиноидного элемента кюрия Cm-248 с образованием элемента-114 («экасвинца») была открыта в Дубне в 1979 г. Было установлено, что в этой реакции образуется «холодное» ядро, не «испаряющее» ни одного нейтрона, а всю избыточную энергию уносит одна -частица. Это означает, что для синтеза новых элементов может быть реализован также четвертый вид ядерных реакций между ускоренными ионами атомов со средними массовыми числами и атомами тяжелых трансурановых элементов.

В развитии теории периодической системы химических элементов большую роль сыграло сопоставление химических свойств и строения электронных оболочек лантаноидов с порядковыми номерами 58–71 и актиноидов с порядковыми номерами 90–103. Было показано, что сходство химических свойств лантаноидов и актиноидов обусловлено подобием их электронных структур. Обе группы элементов являются примером внутреннего переходного ряда с последовательным заполнением 4f - или 5f -электронных оболочек соответственно после заполнения внешних s - и р -электронных орбиталей.

Элементы с порядковыми номерами в периодической таблице 110 и выше были названы сверхтяжелыми. Продвижение к открытию этих элементов становится все более трудным и долгим, т.к. недостаточно провести синтез нового элемента, нужно его идентифицировать и доказать, что новый элемент обладает лишь ему одному присущими свойствами. Трудности вызваны тем, что для изучения свойств новых элементов доступным оказывается небольшое число атомов. Время же, в течение которого можно изучать новый элемент до того, как произойдет радиоактивный распад, обычно очень невелико. В этих случаях, даже когда получен всего один атом нового элемента, для его обнаружения и предварительного изучения некоторых характеристик используют метод радиоактивных индикаторов.

Элемент-109 – мейтнерий – это последний элемент в периодической таблице, представленной в большинстве учебников по химии. Элемент-110, принадлежащий к той же группе периодической таблицы, что и платина, был впервые синтезирован в г. Дармштадт (Германия) в 1994 г. с помощью мощного ускорителя тяжелых ионов по реакции:

Время полураспада полученного изотопа крайне мало. В августе 2003 г. 42-я Генеральная ассамблея ИЮПАК и Совет ИЮПАК (Международный союз по чистой и прикладной химии) официально утвердили название и символ элемента-110: дармштадтий, Ds.

Там же, в Дармштадте, в 1994 г. впервые был получен элемент-111 путем воздействия пучка ионов изотопа 64 28 Ni на атомы 209 83 Bi в качестве «мишени». Своим решением в 2004 г. ИЮПАК признал открытие и одобрил предложение назвать элемент-111 рентгением, Rg, в честь выдающегося немецкого физика В.К.Рентгена, открывшего Х -лучи, которым он дал такое название из-за неопределенности их природы.

По информации, полученной из ОИЯИ, в Лаборатории ядерных реакций им. Г.Н.Флерова осуществлен синтез элементов с порядковыми номерами 110–118 (за исключением элемента-117).

В результате синтеза по реакции:

в Дармштадте в 1996 г. получено несколько атомов нового элемента-112, распадающегося с выделением -частиц. Период полураспада этого изотопа составлял всего 240 микросекунд. Немного позже в ОИЯИ поиск новых изотопов элемента-112 провели, облучая атомы U-235 ионами Са-48.

В феврале 2004 г. в престижных научных журналах появились сообщения об открытии в ОИЯИ нашими учеными совместно с американскими исследователями из Национальной лаборатории имени Лоуренса в Беркли (США) двух новых элементов с номерами 115 и 113. Этой группой ученых в экспериментах, проведенных в июле–августе 2003 г. на циклотроне У-400 с газонаполненным сепаратором, в реакции между атомами Am-243 и ионами изотопа Ca-48 были синтезированы 1 атом изотопа элемента-115 с массовым числом 287 и 3 атома с массовым числом 288. Все четыре атома элемента-115 быстро распадались с выделением -частиц и образованием изотопов элемента-113 с массовыми числами 282 и 284. Наиболее стабильный изотоп 284 113 имел период полураспада около 0,48 с. Он разрушался с эмиссией -частиц и превращался в изотоп рентгения 280 Rg.

В сентябре 2004 г. группа японских ученых из Физико-химического исследовательского института под руководством Косуки Морита (Kosuke Morita) заявила, что ими синтезирован элемент-113 по реакции:

При его распаде с выделением -частиц получен изотоп рентгения 274 Rg. Поскольку это первый искусственный элемент, полученный японскими учеными, они посчитали, что вправе сделать предложение назвать его «японием».

Выше уже отмечался необычный синтез изотопа элемента-114 с массовым числом 288 из кюрия. В 1999 г. появилось сообщение о получении в ОИЯИ этого же изотопа элемента-114 путем бомбардировки ионами Са-48 атомов плутония с массовым числом 244.

Было также заявлено об открытии элементов с порядковыми номерами 118 и 116 в результате длительных совместных исследований ядерных реакций изотопов калифорния Cf-249 и кюрия Сm-245 c пучком тяжелых ионов Са-48, проведенных российскими и американскими учеными в период 2002–2005 гг. в ОИЯИ. Элемент-118 замыкает 7-й период таблицы Менделеева, по своим свойствам является аналогом благородного газа радона. Элемент-116 должен обладать некоторыми свойствами, общими с полонием.

По сложившейся традиции открытие новых химических элементов и их идентификация должны быть подтверждены решением ИЮПАК, но право предложить названия элементам предоставляется первооткрывателям. Подобно карте Земли, периодическая таблица отразила названия территорий, стран, городов и научных центров, где были открыты и изучены элементы и их соединения, увековечила имена знаменитых ученых, внесших большой вклад в развитие периодической системы химических элементов. И не случайно элемент-101 назван именем Д.И.Менделеева.

Для ответа на вопрос, где может проходить граница периодической таблицы, в свое время была проведена оценка электростатических сил притяжения внутренних электронов атомов к положительно заряженному ядру. Чем больше порядковый номер элемента, тем сильнее сжимается электронная «шуба» вокруг ядра, тем сильнее притягиваются внутренние электроны к ядру. Должен наступить такой момент, когда электроны начнут захватываться ядром. В результате такого захвата и уменьшения заряда ядра существование очень тяжелых элементов становится невозможным. Подобная катастрофическая ситуация должна возникнуть при порядковом номере элемента, равном 170–180.

Эта гипотеза была опровергнута и показано, что нет ограничений для существования очень тяжелых элементов с точки зрения представлений о строении электронных оболочек. Ограничения возникают в результате неустойчивости самих ядер.

Однако надо сказать, что время жизни элементов уменьшается нерегулярно с ростом атомного номера. Следующая ожидаемая область устойчивости сверхтяжелых элементов, обусловленная появлением замкнутых нейтронных или протонных оболочек ядра, должна лежать в окрестности дважды магического ядра с 164 протонами и 308 нейтронами. Возможности открытия таких элементов пока не ясны.

Таким образом, вопрос о границе периодической таблицы элементов по-прежнему сохраняется. Исходя из правил заполнения электронных оболочек с увеличением атомного номера элемента, прогнозируемый 8-й период таблицы Менделеева должен содержать суперактиноидные элементы. Отводимое им место в периодической таблице Д.И.Менделеева соответствует III группе элементов, подобно уже известным редкоземельным и актиноидным трансурановым элементам.

28 ноября 2016 года Международный союз теоретической и прикладной химии (ИЮПАК) присвоил названия четырем сверхтяжелым элементам: нихонию (113 элемент периодической системы), московию (115 элемент), теннесину (117 элемент) и оганесону (118 элемент). Московий, теннесин и оганесон впервые были получены в Российской Федерации в коллаборации с американскими физиками. В годовщину этой даты N + 1 совместно с Издательством Яндекса предлагает вам представить себя алхимиком и попробовать синтезировать один (или несколько, как повезет) сверхтяжелых элементов на ускорителе элементарных частиц.

Сверхтяжелые химические элементы с атомным номером больше 100 удается получить только в реакциях слияния в ускорителях заряженных частиц. В них тяжелое ядро-мишень обстреливают более легкими ядрами-снарядами. Ядра новых элементов возникают в случае точного попадания и слияния ядер снаряда и мишени. У вас есть возможность почувствовать себя алхимиком-любителем и создать новый элемент. В вашем распоряжении есть ядра-снаряды и ядра-мишени. Выберите пару и нажмите кнопку «Включить ускоритель». Если выберете правильную пару, то получите сверхтяжелый элемент, увидите продукты его распада и узнаете, кем и когда он был синтезирован в реальности.


А еще мы совместно с Издательством Яндекса приготовили ответы на распространенные в интернете вопросы про сверхтяжелые элементы. Кликните на вопрос, чтобы увидеть ответ.


Можно ли предсказать, сколько сверхтяжелых элементов еще можно будет открыть? Есть ли какое-то максимальное количество протонов, которое может быть в ядре и которое бы ограничивало массу элемента?

Все подобные предсказания основаны на современных моделях устойчивости атомных ядер. Исходя из самых наивных соображений кажется, что устойчивым может быть любое ядро, в котором кулоновское отталкивание между положительно заряженными протонами компенсируется силой связи между ними за счет сильного взаимодействия. Для этого, в любом случае, в ядре должно быть определенное количество незаряженных нейтронов, однако соотношение между количеством нейтронов и протонов - недостаточное условие для устойчивости атомных ядер. Здесь вступает в игру квантовая природа нуклонов: они обладают полуцелым спином и, как и электроны, стремятся собираться парами и формировать заполненные энергетические уровни.

Эти эффекты приводят к различию в устойчивости протонно-нейтронных систем относительно нескольких путей распада - спонтанного деления (которое происходит в результате квантово-механических эффектов и без внешнего возбуждения приводит к разделению на более легкие ядра и нейтроны), также α- и β-распада с испусканием α-частицы или электрона (или позитрона) соответственно. По отношению к каждому из каналов распада у каждого ядра есть свое время жизни. Так, при увеличении атомного номера элемента резко увеличивается вероятность спонтанного деления, что накладывает значительные ограничения на существование стабильных ядер сверхтяжелых элементов - все они должны быть неустойчивыми с довольно коротким периодом полураспада. Поэтому для всех элементов тяжелее свинца стабильных изотопов нет, все они радиоактивные.

Тем не менее, теория предсказывает, что даже среди сверхтяжелых элементов могут быть изотопы с относительно большим временем жизни. Они должны существовать для систем с подходящим соотношением протонов и нейтронов и полностью заполненными протонными и нейтронными уровнями. Тем не менее, синтезировать такие элементы пока не удалось, и если до ближайшего «острова стабильности» (который предсказывается для ядра флеровия со 184 нейтронами) добраться в ближайшем будущем кажется возможным, то отыскать среди абсолютно неустойчивых систем более тяжелые ядра со следующей заполненной оболочкой будет значительно тяжелее, если не невозможно.

Стоит, однако, отметить, что все эти предсказания основаны на моделях, которые хорошо работают для сравнительно небольших ядер, однако для сверхтяжелых элементов форма ядра, например, начинает довольно заметно отклоняться от сферической, что требует внесения поправок в эти модели.


Есть ли у сверхтяжелых элементов какое-то практическое применение? Или, возможно, оно появится в будущем?

На данный момент у сверхтяжелых элементов никакого практического применения нет. Это объясняется несколькими причинами. Во-первых, их синтез - крайне сложный технологический процесс, занимающий довольно долгое время, в результате которого происходит образование совсем небольшого количества ядер. Во-вторых, из всех элементов с порядковым номером больше ста только фермий (100-й элемент) и менделевий (101-й) имеют сравнительно стабильные изотопы с периодом полураспада 100 и 50 суток соответственно. У остальных же сверхтяжелых элементов даже самые устойчивые из синтезированных изотопов распадаются в лучшем случае за несколько десятков часов, а чаще - за секунды или даже миллисекунды.

Поэтому пока процесс синтеза сверхтяжелых ядер представляет лишь фундаментальный интерес, связанный с изучением нуклон-нуклонного взаимодействия и взаимодействия между кварками. Свойства синтезированных изотопов помогают строить более точные теоретические модели, которые можно использовать не только для исследования ядер атомов на Земле, но и, например, при изучении нейтронных звезд, в ядре которых плотность нуклонов значительно превышает плотность в ядрах атомов.

Ученые ожидают, что в будущем у сверхтяжелых элементов могут появиться и какие-то практические применения, связанные, в частности, с разработкой сенсоров или радиографических методов в медицине или промышленности. Возможно, это будут и какие-то новые способы использования, которые невозможно предсказать сейчас, однако в ближайшие годы их точно ожидать не стоит, потому что для этого должны кардинальным образом измениться технологии их получения.


Можно ли получить стабильные изотопы сверхтяжелых элементов, или все они будут только радиоактивными?

Стабильные изотопы элементов, расположенных в таблице Менделеева после свинца, сейчас неизвестны. Порядковый номер свинца в таблице Менделеева - 82-й. Это значит, что все элементы начиная с висмута будут так или иначе радиоактивными. Период полураспада этих элементов, однако, может варьироваться в очень широких пределах. Так, у наиболее устойчивого изотопа висмута, который раньше считался устойчивым, период полураспада составляет 2 × 10 19 лет, что на несколько порядков больше возраста Вселенной.

У синтезированных на данный момент изотопов сверхтяжелых элементов (с порядковым номером в таблице элементов больше ста) период полураспада значительно меньше, чем у висмута, и варьируется от ста дней до долей миллисекунды. Все они тоже радиоактивны.

Однако, согласно теоретическим предсказаниям, для некоторых элементов с определенным числом протонов и нейтронов в ядре возможно значительное увеличение периода полураспада. Нужное количество нейтронов и протонов в ядре соответствует полностью заполненным нейтронным и протонным оболочкам и предположительно должно равняться 114 для протонов и 184 для нейтронов. Теоретически такая конфигурация должна приводить к увеличению периода полураспада от сотен микросекунд до 10 5 лет. Относительная устойчивость ядер с числом протонов и нейтронов, близким к этим значениям, позволяет предположить существование «острова стабильности» среди сверхтяжелых элементов. Тем не менее, подтвердить его существование экспериментально пока не удалось. Но даже столь значительное увеличение времени жизни ядер не сделает эти изотопы устойчивыми - они так и останутся радиоактивными.


Возможно ли, хотя бы теоретически, обнаружить сверхтяжелые элементы в природе? Или хотя бы продукты их распада, которые бы доказывали, что такие элементы существовали?

Ни один из сверхтяжелых элементов обнаружен в природе не был (что неудивительно, учитывая, что у всех из них очень короткие периоды полураспада). Элемент с самым большим порядковым номером, который удалось найти на сегодняшний день в природе, - это уран с его 92 протонами в ядре.

В начале 1970-х годов сообщалось о нахождения в природных минералах элемента с порядковым номером 108 (позднее был синтезирован под названием хассий), около десяти лет назад говорили об обнаружении в образцах тория следов 122-го элемента, однако подтверждены эти факты не были.

На Земле условий, необходимых для синтеза устойчивых сверхтяжелых ядер, нет и никогда не было, однако считается, что близкие к подобным условиям могут достигаться при взрывах сверхновых. Температура при этом поднимается до значений, достаточных для запуска быстрого поглощения ядрами нейтронов (так называемого r-процесса). Пока достоверных подтверждений естественного образования элементов с порядковым номером больше 100 в таких процессах зафиксировано не было, однако проводятся исследования состава космических лучей на предмет наличия в них следов сверхтяжелых элементов. В частности, об обнаружении в метеоритном веществе частиц с атомными числами более 100 говорили в 2011 году. Эти данные, однако, также не были подтверждены.


Откуда появилось выражение «трансфермиевые войны» и почему так часто возникает вопрос о первенстве той или иной группы в синтезе нового элемента?

Это выражение обычно используют для обозначения споров между США и СССР о приоритете при открытии элементов с порядковыми номерами 104,105 и 106, которые были были открыты в 60-х и 70-х годах XX века. Сам термин «трансфермиевые войны» (все эти элементы располагаются в таблице Менделеева как раз вслед за фермием) был впервые предложен в 1994 году. В Советском Союзе синтез проводился в Объединенном институте ядерных исследований в Дубне, в США - в Национальными лабораториями имени Лоуренса в Беркли и Ливерморе. Первые удачные попытки синтеза 104-го элемента сейчас датируются 1964 годом, 105-го элемента - 1970 годом, а 106-го - 1974-м.

Советская сторона считала, что именно в Дубне впервые удалось синтезировать 104-й и 105-й элементы, и использовала для них названия «курчатовий» и «нильсборий» соответственно. Американские ученые критиковали результаты советских экспериментов и доказывали, что первыми получили эти элементы физики в их лабораториях и назвали их «резерфордием» и «ганием» (в честь Эрнеста Резерфорда и Отто Гана соответственно). Однако из-за того, что значительная часть данных о синтезе была в то время закрыта, однозначно определить первенство той или иной группы было достаточно сложно.

Из-за этого процесс выяснения первенства растянулся на 30 лет и стал одним из элементов холодной войны. Лишь в 1994 году была собрана международная комиссия, которая рассмотрела известные данные и предложила свои варианты названий для элементов. Изначально некоторые из принятых решений вызывали споры, в частности о присвоении элементам имен в честь еще живущего человека (Гленна Сиборга), перенесении названия от одного элемента другому относительно начальных предложений (что вовлекло в споры третью сторону - немецкое Общество исследования тяжелых элементов, ученые которого синтезировали 107-й, 108-й и 109-й элементы).

В результате было найдено компромиссное решение, и в 1997 году произошло окончательное утверждение приоритетов и названий элементов. В частности, было решено не увековечивать имена Игоря Курчатова и Отто Гана, имеющих отношение к советскому и нацистскому ядерным проектам. 104-й и 106-й элемент сейчас используют названия, предложенные американской стороной (резерфордий и сиборгий), 105-й элемент - в признание заслуг советских ученых назвали дубнием, для 107-го, 108-го и 109-го элементов используют названия, предложенные немецкими учеными - борий, хассий и мейтнерий (лишь первый из них отличается от предложенного варианта - изначально его предлагали называть нильсборием). Сейчас благодаря открытости данных и прописанной процедуре присвоения элементам имен вопросы о приоритете решаются значительно проще.

Миниатюра из алхимической рукописи XVI века «Блеск Солнца»


Могут ли сверхтяжелые элементы рождаться при взрывах сверхновых? И можем ли мы это рождение зафиксировать?

Известно, что при вспышках сверхновых может происходить образование ядер очень тяжелых элементов, например урана или тория. Эти ядра образуются по механизму быстрого захвата нейтронов (так называемый r-процесс). Считается, что при взрыве сверхновой образуется достаточная температура - около четырех миллиардов градусов - для запуска этого процесса. Тем не менее, частота образования самых тяжелых ядер даже в таких условиях не очень высока. Считается также, что, кроме урана и тория, при взрыве сверхновых звезд возможно, например, образование калифорния (это 98-й элемент).

Для образования более тяжелых ядер в результате r-процесса необходим запуск термоядерной реакции - таким образом, например, на Земле удалось впервые синтезировать эйнштейний (99-й элемент) и фермий (100-й). Предполагается, что несколько термоядерных взрывов могут привести и к достижению острова стабильности в результате r-процесса. Однако сегодня принято считать, что при взрывах сверхновых такие условия не выполняются и элементы с порядковыми номерами более 100 не образуются. Тем не менее, следы стабильных сверхтяжелых элементов, которые могли образоваться при взрывах сверхновых, продолжают искать, например, в космических лучах и облученных ими метеоритах. Подтверждение же синтеза более легких элементов (например, урана или калифорния) проводят по спектроскопическим исследованиям продуктов их спонтанного деления.


Почему так часто реакции синтеза сверхтяжелых элементов оказываются неудачными, если по теоретическим расчетам они должны работать?

Сверхтяжелые ядра получают с помощью реакции слияния более легких ядер друг с другом. Для этого мишень из более тяжелых элементов бомбардируют ядрами более легких. Чтобы получить ядро с необходимым числом протонов и нейтронов, нужно правильно подобрать те ядра, которые используются в качестве мишеней и снарядов. Здесь может быть несколько проблем, снижающих вероятность образования нужного ядра и его обнаружения.

Во-первых, для образования нужного ядра необходимо преодолеть электростатический барьер - все-таки оба сталкиваемых ядра обладают довольно большим положительным зарядом (и до того, как на коротких расстояниях между протонами начнут действовать силы притяжения, нужно преодолеть дальнодействующее электростатическое отталкивание). Для этого тем ядрам, которыми бомбардируют мишень, необходимо изначально придать достаточно высокую энергию.

Для снижения этого барьера выгоднее использовать в качестве налетающих частиц ядра с довольно большим количеством протонов. Однако их выбор на сегодняшний день ограничен. Раньше для синтеза новых ядер мишени из тяжелых элементов, например свинца, плутония или урана, бомбардировали сравнительно легкими ядрами, например неоном-22 или кислородом-18. Позже для этих целей использовали различные изотопы более тяжелых элементов: железа-58, никеля-62, никеля-64 или цинка-70. Крайне важными стали продукты реакции различных мишеней с изотопом кальция-48.

Перспективными считаются реакции, в которых мишень из урана бомбардируют ионами из сверхтяжелых элементов - того же урана, калифорния, эйнштейния. Для повышения вероятности образования ядра нужно, чтобы налетающее ядро имело сравнительно небольшой момент импульса, а образующееся «компаунд-ядро» имело форму, близкую к сферической. Нарушение этих требований приводит к тому, что реакции не происходят. Однако даже при правильном подборе параметров процесс синтеза очень долог - облучение мишени в течение нескольких месяцев может привести к синтезу сотни нужных ядер.

Таким образом, ограниченный выбор изотопов, которые можно использовать в реакциях синтеза, сложная, с технической точки зрения, их реализация и длительное время протекание реакций значительно снижают вероятность синтеза нужных ядер - даже тех, которые, по теоретическим предсказаниям, должны оказаться устойчивыми.


Раньше считали, что центр «острова стабильности» должен находиться в районе 114 элемента, а где «остров стабильности» находится по современным представлениям? Может быть, его нет вообще?

Центр «острова стабильности», согласно оболочечной модели ядра, соответствует полностью заполненным протонной и нейтронной оболочкам - изотопу с порядковым номером 114 и массовым числом 298, то есть ядру, состоящему из 114 протонов и 184 нейтронов.

Некоторые ученые считают, что центр «острова стабильности» может соответствовать следующему протонному «магическому числу» и, таким образом, более устойчивым должен быть элемент с 120-м номером (а может быть, даже и со 126-м). Кроме того, из-за высокой вероятности α-распада центр стабильности может быть смещен относительно номера 114-го к 112-му и 110-му элементам.

Поскольку для образования относительно устойчивого ядра важно не только количество протонов в нем, но и количество нейтронов, пока синтезировать изотопы с нужным числом нуклонов из-за ограниченного выбора изотопов в эксперименте не удавалось. Потому необходимых данных для подтверждения существования «острова стабильности» нет. Однако те измерения, которые были проведены для менее устойчивых изотопов сверхтяжелых элементов, достаточно хорошо согласуются с данными теоретических моделей.

Тем не менее, стоит отметить, что положение «острова стабильности» определено в рамках концепции оболочечной модели ядра, которая при большом количестве нейтронов или протонов может работать не совсем точно. В частности, некоторые эффекты, связанные с взаимодействием кварков, для нейтрон-избыточных ядер с помощью нее объяснить не удается.


Каков срок жизни элементов в центре «острова стабильности»?

Согласно теоретическим предсказаниям, центру «острова стабильности» соответствует ядро, состоящее из 114 протонов и 184 нейтронов. Синтезировать такой тяжелый изотоп пока не удалось. Однако по данным теоретических моделей именно такое число нуклонов в ядре соответствует полностью заполненным энергетическим оболочкам.

Что касается периодов полураспада этих элементов, то при делении ядер стоит принимать во внимание три возможных процесса: спонтанное деление ядер, а также α- и β-распад. Так, период полураспада 298 114, согласно предсказаниям моделей, должен составлять примерно 10 16 лет относительно спонтанного деления, 10 лет - относительно α-распада и около 10 5 лет - относительно β-распада.

С учетом всех видов распада наиболее стабильным ядром оказывается ядро 298 110. По данным теории, период его полураспада должен составлять около 10 9 лет. Тем не менее, область стабильных ядер относительно широкая, и почти для всех ядер с четным числом протонов от 110 до 114 и четным числом нейтронов от 180 до 184 период полураспада превышает 1 год.

Пока эти числа - лишь результат теоретических расчетов. Самый тяжелый и самый устойчивый изотоп 114-го элемента (флеровия Fl), который на данный момент был получен экспериментально, - это 289 Fl. Период его полураспада составляет около 30 секунд. Период самого стабильного изотопа 110-го элемента (дармштадтий Ds) - около 10 секунд. Тем не менее, экспериментально полученные значения довольно хорошо согласуются с предсказаниями теоретических моделей, поэтому если удастся провести синтез нужных ядер с большим числом нейтронов, время их жизни может существенно увеличиться.


Десять лет назад ученые говорили , что может существовать второй «остров стабильности». Удалось ли его обнаружить?

Вообще, согласно современным теоретическим моделям, в обозримой области элементов может существовать не два, а даже больше «островов стабильности», которые будут соответствовать ядрам с полностью заполненными нейтронными и протонными оболочками, когда число нуклонов равняется так называемому «магическому числу». Сейчас элемент, который может быть «островом стабильности», соответствует изотопу, состоящему из 114 протонов и 184 нейтронов. Согласно современным оболочечным моделям ядра, следующие для протонов «магические числа» - это 126 и 164, а для нейтронов - 196, 228 и 272.

Про возможное существование относительно устойчивых ядер с 120 или 126 протонами говорят довольно давно, а десять лет назад говорили о возможном существовании «острова стабильности» в районе 164-го элемента. Тем не менее, если возможного исследования 120-го элемента в относительно близкой перспективе еще можно ожидать, то говорить об экспериментальном изучении 126-го, а тем более 164-го элемента не приходится. Для этого нужны новые ускорители тяжелых ядер, которые позволили бы работать с низкими концентрациями короткоживущих изотопов. На данный момент таких устройств нет.

Сейчас самый тяжелый элемент, синтез которого удалось подтвердить, - это оганесон с порядковым номером 118. Кроме того, стоит отметить, что применимость использованных теоретических моделей для таких тяжелых ядер тоже не доказана.


Можно ли рассматривать нейтронные звезды как гигантское атомное ядро? Если нет, то в чем принципиальное отличие?

Нет, нейтронная звезда, хоть и состоит преимущественно из протонов и нейтронов, на гигантское атомное ядро не очень похожа. На самом деле, звезда имеет довольно сложное строение - как минимум пять слоев с разными свойствами, и тяжелые атомные ядра входят в состав некоторых из них как один из важных компонентов. При этом во внешних слоях в нейтронной звезде присутствуют, например, и электроны. А во внутренних слоях - ближе к центру нейтронной звезды - очень много свободных нейтронов.

Несмотря на то, что атомное ядро - квантово-механическая система с максимальной плотностью нейтронов и протонов на Земле, в нейтронных звездах плотность нуклонов значительно выше. Размер нейтронных звезд - всего пара десятков километров, а их масса часто превышает массу Солнца, поэтому ближе к центру звезды у нее очень высокая плотность - в несколько раз больше, чем в любом атомном ядре. В ядре нейтронной звезды лишь несколько процентов электронов и протонов, основную массу составляют нейтроны, которые находятся в состоянии ферми-жидкости. В самом центре звезды - во внутреннем ядре - плотность нуклонов может в 10–15 раз превышать плотность в атомных ядрах, при этом точный состав, состояние и механизмы взаимодействия частиц в таких плотных системах достоверно неизвестны.

Исследования нейтрон-избыточных ядер важную информацию, о том, каким образом нейтроны и кварки могут взаимодействовать в ядре нейтронной звезды, однако состояние нуклонов в центре нейтронной звезды в любом случае сильно отличается от того, которое можно наблюдать в атомных ядрах даже самых тяжелых элементов.


Александр Дубов


Сколько элементов в химической таблице Менделеева? Все ли они занимают стабильное, устойчивое и безусловное место? О границах существования элементов в природе, нейтронной материи и синтезе сверхтяжелых элементов - член-корреспондент РАН Юрий Оганесян и доктор физико-математических наук Михаил Иткис.

Тезисы для дискуссии:

Что мы знаем и что хотим понять по проблеме синтеза сверхтяжелых элементов?

Есть ли границы существования элементов в природе?

Как происходил нуклеосинтез элементов во Вселенной?

Что обуславливает возможную стабильность сверхтяжелых элементов?

Насколько эта проблема фундаментальна и есть ли у нее политический аспект?

Возможности современной экпериментальной техники для ее решения.

Что такое нейтронная материя? Можно ли изучать ее в лабораторных условиях, а не только в процессе исследования астрофизических объектов, таких как нейтронные звезды и т. д.? Тенденции в мировой науке.

Нужно ли обществу изучение вышеуказанных фундаментальных проблем науки? Приводит ли оно к появлению новых идей в виде новых технологий, источников энергии, медицинских приборов и т. п.

Обзор темы

Известно, что все элементы от самого легкого (водорода) до самого тяжелого (урана) составляют окружающий нас мир. Они существуют в Земле. Это значит, что время их жизни больше, чем возраст самой Земли. Все элементы после урана - тяжелее его. Они образовались когда-то в процессе нуклеосинтеза, но не дожили до наших дней. Сегодня их можно получить только искусственным способом.

Концепция атома общеизвестна: ядро, которое содержит всю массу атома и его положительный заряд, и электронные орбитали. Гипотетически оно может существовать до атомных номеров: 160 и, быть может, 170. Однако граница существования элементов намечается значительно раньше, и причина кроется в нестабильности самого ядра. Поэтому вопрос о пределах существования элементов должен быть адресован ядерной физике. Если посмотреть на ядра, которые содержат разное число протонов и нейтронов, то стабильные элементы встречаются только до свинца и висмута. Затем (рис. 1) расположен «небольшой полуостров», в котором обнаружены в Земле только торий и уран. Из этого следует, что вопрос о пределах существования элементов зависит от стабильности ядер, и должен быть адресован ядерной физике.

Рис. 1. Карта изотопов с атомными номерами 70 Zі. Стабильность атомов показана плотностью цвета согласно правой шкале. Для области 112 Zі и 165 Zі приведены теоретические предсказания периодов полураспада гипотетических сверхтяжелых атомов.

Как только мы продвигаемся за уран, время жизни ядер резко падает. Изотопы заурановых элементов радиоактивны, они испытывают альфа-распад. Время жизни ядер уменьшается в логарифмическом масштабе. Эта логарифмическая шкала показывает, что от урана (92-элемента) до 100-го элемента стабильность ядер уменьшается на 20 с лишним порядков.

На самом деле, положение оказалось еще более сложным. Спонтанное деление - четвертый тип радиоактивности - настигает альфа-распад в области 100-го элемента, и в дальнейшем время жизни ядер уменьшается значительно быстрее.

Спонтанное деление было открыто К. А. Петржаком и Г. Н. Флеровым 60 лет тому назад как редкая разновидность распада урана. Оно становится основным, когда речь заходит о более тяжелых элементах.

Объяснение явления спонтанного деления было дано Нильсом Бором в 1939 г. Согласно Н. Бору, подобный процесс может произойти, если предположить, что ядерное вещество обладает свойствами бесструктурной материи типа капли заряженной жидкости. Если капля испытывает деформацию под действием электрических сил, то ее потенциальная энергия растет до определенного предела, а затем уже необратимо уменьшается с ростом деформации до тех пор, пока капля не разделится на две части. Таким образом у ядра урана возникнет некий барьер, который удерживает это ядро от деления на протяжении 10 16 лет.

Если перейти от урана к более тяжелому элементу, в ядре которого кулоновские силы значительно больше, барьер понижается, и вероятность деления сильно возрастает. Наконец, при дальнейшем увеличении заряда ядра мы придем к пределу, когда уже нет никакого барьера, т. е. когда даже сферическая форма капли оказывается неустойчивой к разделению на две части.

Это и есть предел стабильности ядра. Согласно расчетам Бора и Уиллера этот предел ожидался для элементов с атомными номерами 104–106.

Совершенно неожиданным было обнаружение в 1962 г. в Дубнинской лаборатории ядерных реакций еще и другого периода полураспада у тяжелых ядер, включая уран. Т. е. у одного и того же ядра могут быть два однотипных распада с различной вероятностью, или два времени жизни. Для урана - одно время составляет 10 16 лет, что и было обнаружено Флеровым и Петржаком, а второе очень короткое, всего 0,3 микросекунды. При двух периодах полураспада надо полагать наличие у ядра двух состояний, из которых происходит деление. Это никаким образом не вписывается в представление о капле.

Два состояния могут быть только в том случае, если тело не аморфное, а имеет внутреннюю структуру.

Итак, ядерное вещество не является полным аналогом капли заряженной жидкости

Капля есть некое приближение к описанию ядерной материи; ядро же имеет внутреннюю структуру.

Вопросами ядерной структуры серьезно занялись теоретики-ядерщики; в нашей стране - В. М. Струтинский, С. Т. Беляев, В. В. Пашкевич и др. Они решали довольно сложную задачу - как объяснить, что барьер урана является двугорбым и как меняется структура ядра при его деформации.

И это было объяснено. Но если найденное теоретиками объяснение правильно отражает свойства ядер, то когда мы придем к сверхтяжелым элементам, картина будет совсем не такой, как прогнозировалось для капли жидкости. В тяжелых элементах эта структура будет проявляться в полной мере там, где капля несостоятельна, и будет возникать так называемый структурный барьер. А это означает, что ядро может жить очень долго.

Этот нетривиальный вывод теории привел, по существу, к предсказанию гипотетической области стабильности сверхтяжелых элементов, расположенных далеко от тех элементов, которые известны и с которыми мы привыкли работать.

Как только это было предсказано, все крупнейшие лаборатории мира буквально бросились на то, чтобы экспериментально проверить эту гипотезу. Этим занимались в Соединенных Штатах, во Франции, в Германии. Однако во всех опытах были получены отрицательные результаты.

Последние два года в Дубнинской лаборатории проводились эксперименты по синтезу новых, самых тяжелых элементов с атомными номерами 114 и 116. Задача состояла в том, чтобы получить атомы новых элементов, ядра которых обладают большим избытком нейтронов. Только в этом случае мы смогли бы приблизиться к границам гипотетического «острова стабильности» и наблюдать увеличение времени жизни сверхтяжелых ядер.

Результаты опытов привели к выводу о том, что «остров стабильности» действительно существует.

Каковы пути получения (синтеза) сверхтяжелых ядер? Сначала использовался нейтронный метод синтеза, когда в ядро вгоняется очень много нейтронов. В этом случае естественным было бы облучение исходно стартового вещества мощным потоком нейтронов. Для этого использовались все более и более мощные реакторы. Однако, реакторный способ синтеза исчерпал себя на фермии (элементе с атомным номером 100), потому что изотоп фермия с массой 258, который должен получаться в результате захвата нейтронов, живет всего 0,3 миллисекунды. Вся цепочка последовательного захвата нейтронов разорвалась на ступени захвата 20-го нейтрона. Здесь же необходимо пройти более 60 ступеней. Нейтронный метод не пошел.

Попытка американских исследователей использовать другой способ - получить сверхтяжелые элементы в ядерных взрывах, т. е. в мощном импульсном потоке нейтронов, в конечном итоге привела к образованию того же изотопа 100-го элемента с массой 257.

Бесперспективность нейтронного метода привела к идее использовать принципиально иной способ синтеза сверхтяжелых элементов, который начал развиваться в середине 50-х годов - «тяжело-ядерный». Он заключается в том, что два тяжелых ядра сталкиваются друг с другом в надежде на то, что они сольются и как результат получится ядро суммарной массы. Для того, чтобы произошла такая реакция, одно из ядер необходимо разогнать до скорости примерно 0,1 скорости света. Эту функцию выполняют ускорители. То, что мы знаем сегодня о свойствах тяжелых элементов второй сотни, было получено с помощью ускорителей тяжелых ионов в реакциях этого типа.

Каковы свойства трансурановых элементов?

Если 92-элемент - уран живет миллиард лет, то тяжелое ядро 112-элемента живет всего 0,1 миллисекунды. Действительно, увеличение атомного номера на 20 единиц приводит к уменьшению времени жизни ядра более чем в 10 20 раз. Однако, «остров стабильности» расположен там, где ядра содержат значительно больше нейтронов. Поэтому надо двигаться в сторону более нейтронно-избыточных ядер. Это трудно осуществить, так как в стабильных нуклидах отношение числа протонов к числу нейтронов строго определено. Было решено использовать реакции, в которых большой нейтронный избыток изначально задан как в ядре материала мишени, который нарабатывается в ядерном реакторе, так и в ядре-снаряде, который в данном случае был выбран в качестве ядра кальция-48.

Кальций-48 - стабильный изотоп кальция, элемента с атомным номером 20. Кальция в природе много. Но изотоп кальция с массой 48 крайне редок. Его содержание в обычном кальции всего 0,18%. Выделить его из кальция - задача неимоверно трудная. Тем не менее, если бы нам удалось ускорить ионы кальция-48, то, облучая уран, плутоний или кюрий, мы могли бы пробраться в заветную область, где ожидается подъем стабильности, и там должны были бы почувствовать эффект резкого подъема времени жизни сверхтяжелых элементов.

В конкретном эксперименте была выбрана реакция, где в качестве исходного вещества использовался плутоний (Z = 94), его самый тяжелый изотоп с массой 244, а в качестве бомбардирующего иона изотоп кальция-48. Мы рассчитывали на то, что реакция слияния этих ядер приведет к образованию 114-элемента, который должен быть более устойчивым по сравнению с элементами, поученными ранее.

Для того, чтобы поставить подобный опыт, нужно было создать ускоритель с мощностью пучка кальция-48, превосходящую все известные ускорители в десятки раз. При этом он должен был дать высокую интенсивность ускоренных ионов и расходовать как можно меньше дорогостоящего кальция-48. Это потребовало длительных и напряженных поисков решения задачи. В конце концов решение было найдено и в течение 5 лет такой ускоритель в Дубне был создан. При очень малом расходе вещества (0,3 мг/час) была получена интенсивность пучка в несколько единиц на 10 12 ионов в сек. Теперь можно было ставить эксперимент в сто и в тысячу раз более чувствительный, чем это делалось ранее дубнинцами и их коллегами в других странах на протяжении последних 25 лет.

Суть самого эксперимента состояла в следующем. Получив пучок кальция, облучается мишень из плутония. Тяжелый изотоп плутония-244 был предоставлен Ливерморской Национальной Лабораторией (США). Если в результате процесса слияния двух ядер образуются атомы нового элемента, то они должны вылетать из мишени и вместе с пучком продолжать движение вперед. Здесь их надо отделить от ионов кальция-48 и других продуктов реакции. Эту функцию выполняет сепаратор (рис. 2), в котором присутствует поперечное электрическое поле. Поскольку скорости ядер разные, пучок утыкается в стопер, в то время как тяжелые ядра отдачи 114-элемента совершают криволинейную траекторию и в конце концов доходят до детектора. Детектор распознает тяжелое ядро и фиксирует его распад.

Что, собственно говоря, можно ожидать дальше? Если справедлива гипотеза о том, что существует «остров стабильности» в области сверхтяжелых элементов и эти ядра очень устойчивы относительно спонтанного деления, они должны испытывать другой тип распада - альфа-распад.

Иными словами, ядра на вершине и вблизи вершины этого острова, устойчивые к спонтанному делению, должны быть альфа-радиоактивными. Альфа-радиоактивное ядро, как известно, спонтанно выбрасывает альфа-частицу (ядро гелия), состоящую из двух протонов и двух нейтронов, переходя в дочернее ядро. Для выбранной реакции - это переход 114-го в 112-й элемент. Ядра 112-го элемента тоже должны испытывать альфа-распад и переходить в ядра 110-го элемента и т. д. Но по мере последовательных альфа-распадов мы все дальше и дальше отдаляемся от вершины стабильности и в конце концов попадем в море нестабильности, где преобладающим типом распада будет спонтанное деление. Для экспериментатора это весьма яркая картина: в результате последовательных альфа-распадов, каждый из которых оставляет в детекторе энергию около 10 МэВ, происходит деление, в котором сразу высвобождается энергия около 200 МэВ. На этом цепочка распадов обрывается.

Такую цепочку можно наблюдать, если справедлива теоретическая гипотеза. Действительно, в течение эксперимента, который продолжался непрерывно три месяца, ученые впервые наблюдали то, что ждали.

Рис. 3а. Цепочки последовательных распадов сверхтяжелых атомов с Z = 114 и 116, зарегистрированных в ядерных реакциях с ионами 48 Са. Для каждого распада указаны значения энергии, времени прихода сигнала и его позиционной координаты на поверхности детектора площадью 50 см².

После того, как ядро отдачи пришло в детектор, который измеряет его энергию, скорость и координаты места его остановки с высокой точностью, была зарегистрирована альфа-частица с энергией 9,87 МэВ через секунду после остановки. Интересно, что в самом тяжелом ядре, синтезированном ранее, это время занимало всего одну десятитысячную долю секунды. Здесь - секунда.

Затем, спустя 10,3 секунды (тоже долгое время), вылетела вторая альфа-частица с энергией 9,21 МэВ и затем, спустя 14,5 секунд, произошло спонтанное деление. Вся цепочка распадов заняла время около 0,5 минут.

Второе событие было такое же, как первое. Оба эти события совпадают друг с другом по 13-ти параметрам. Поэтому вероятность случайных совпадений сигналов в детекторе, имитирующих подобный распад, составляет всего 10 −16 .

В этом же эксперименте наблюдалось и другое событие, значительно более долгоживущее. Здесь уже распад исчисляется минутами и десятками минут.

Если отклониться в область ядер с дефицитом нейтронов, то спонтанное деление становится все более и более вероятным, что и было обнаружено (когда вместо мишени из плутония-244 использовался более легкий изотоп - плутоний-242). Это точно воспроизводит сценарий, который был предсказан теорией о том, что остров находится справа, среди ядер, обогащенных нейтронами.

Таким образом, синтезированные ядра-изотопы 114-элемента и их дочерние продукты альфа-распада, новые изотопы 112 и 110 элементов уже испытывают действия этих структурных сил, формирующих «остров стабильности» сверхтяжелых элементов. И несмотря на то, что они находятся на значительном расстоянии от вершины острова, тем не менее, их времена составляют минуты и десятки минут (рис. 4). Это примерно на 5 порядков повышает их стабильность по сравнению с изотопами тех же элементов, находящихся вдали от границы острова.

Уникальное вещество - кюрий-248 было получено на мощном реакторе НИИ Атомных Реакторов в г. Димитровграде. Наблюдение цепочки распадов 116-элемента было бы еще одним доказательством получения 114-элемента - в первом случае он был получен непосредственно при облучении плутониевой мишени; в этой же реакции в результате распада более тяжелого родителя.

Рис. 4. Карта нуклидов с указанием цепочек радиоактивного распада атомов, синтезированных в ядерных реакциях под действием ускоренных ионов 48 Са. Топографический фон демонстрирует силу структурных эффектов в ядре атома.

Такой эксперимент был поставлен недавно - и здесь ученые пошли на некоторый риск.

Если в реакции образуется 116-элемент, то после его альфа-распада должно быть получено ядро 114-элемента; иными словами, в этом опыте ученые должны были еще раз (уже третий) наблюдать кроме 116-элемента всю цепочку распада 114-элемента.

После вылета альфа-частицы от распада 116-элемента, ускоритель выключался, и выключалось все силовое оборудование в лаборатории для того, чтобы создать абсолютно бесфоновые условия. Действительно, после того, как тяжелое ядро отдачи пришло в детектор, спустя 47 миллисекунд, вылетела альфа-частица с энергией 10,56 МэВ, которая отключила все мощное оборудование. После этого в совершенно спокойных условиях наблюдался вылет еще одной альфа-частицы, затем другой и следом - спонтанное деление.

Если сравнить цепочку распадов после отключения ускорителя с тем, что наблюдалось для 114-элемента, то можно увидеть полное совпадение по всем параметрам (рис. 3b). Это действительно был распад 114-го элемента, а, стало быть, предыдущая альфа-частица относится к 116-му. Произошло это 19 июля 2000 года. В 2001 году опыт был продолжен и в результате были синтезированы еще 2 ядра 116 элемента.

Теперь можно сравнить предсказание теории и результаты, полученные в эксперименте. Для 116-го элемента согласно теории с увеличением числа нейтронов в ядре от 166 до 176 время жизни ядра должно было возрасти на 5 порядков. Эксперимент дал величину примерно 6 порядков. Для 114-го элемента картина выглядит таким же образом. При увеличении числа нейтронов в этом ядре от 164 до 174 период полураспада возрастает более чем на 6 порядков. Для 112-элемента избыток в 10 нейтронов также увеличивает стабильность ядра на 5–6 порядков. Такая же картина характерна для изотопов 110-элемента.

Это хорошее согласие с теоретической гипотезой. Кроме того, эксперимент показывает, что сверхтяжелые нуклиды в этой области более долгоживущие, чем это следовало из теории.

Следует обратить внимание на вершину «острова стабильности». Эта вершина может составлять миллионы лет. Она не дотягивает до возраста Земли, который составляет 4,5 миллиарда лет. Однако, если принять во внимание, что в эксперименте мы имеем превышение стабильности над расчетными значениями на отрогах «острова стабильности», то не исключено присутствие сверхтяжелых элементов в природе, в нашей системе, либо в космических лучах, т. е. в других системах. Там могут существовать сверхтяжелые элементы, время жизни которых будет исчисляться миллионами лет.

Важно еще одно обстоятельство: теперь таблица элементов пополнилась новыми 114 и 116 элементами. Эксперименты дали новое звучание известным ранее 112, 110, 108 элементам, поскольку увеличение нейтронов привело к существенному возрастанию времени их жизни. Это дает возможность изучать химические свойства этих элементов. Элементы 112-ый, 110-ый и 108-ой, которые живут минуты, стали вполне доступны для исследования их химических свойств методами современной радиохимии. Можно ставить опыты по проверке фундаментального Закона Менделеева относительно унификации свойств в колонках. Применительно к сверхтяжелым элементам мы должны считать, что 112-ый элемент - гомолог кадмия, ртути; 114-ый элемент - аналог олова, свинца и т. д. Пока это просто экстраполяция наших представлений на ранее неизвестные элементы. Фундаментальный Закон периодичности химических свойств элементов можно теперь проверять экспериментально.

Стабильные элементы заканчиваются свинцом и висмутом. Ядра этих атомов являются магическими, что определяет повышенную энергию связи нуклонов в ядре. Затем следует область радиоактивных элементов, среди которых торий и уран наиболее устойчивы. Их период полураспада сравним с возрастом нашей планеты. По мере продвижения в сторону более тяжелых элементов время жизни ядер резко уменьшается. Полуостров радиоактивных элементов имеет выраженные границы. Теория предсказывала, что за «полуостровом» будут следовать «острова стабильности». Они будут расположены в области очень тяжелых элементов, ядра которых обогащены нейтронами.

Попытки получить эти ядра в мощных потоках нейтронов не увенчались успехом. С другой стороны, в реакциях с тяжелыми ионами, начиная с 50-х годов, удалось синтезировать 12 искусственных элементов с атомными номерами более 100. Но в ядрах этих элементов не удалось получить избыток нейтронов, который позволил бы ответить на вопрос: кончается мир «полуостровом» радиоактивных ядер или за ним будет следовать «остров стабильности» еще более тяжелых - сверхтяжелых элементов.

Используя пучки ускоренных ионов изотопа кальция-48 и выбирая в качестве мишени искусственные элементы - тяжелые изотопы плутония и кюрия, полученные в мощных реакторах, ученым удалось подойти лишь к границам этого гипотетического «острова стабильности» и уже здесь обнаружить значительное повышение стабильности сверхтяжелых элементов. Опыты продолжаются, на очереди - 118 элемент.

Что же дальше? Достигнутый успех породил новые замыслы освоения открытой terra incognita. Прежде всего, хотелось бы получать ядра сверхтяжелых элементов (СТЭ) в больших количествах. Конечно, сам факт открытия нового элемента всего по двум наблюденным атомам впечатляет, но для более полного изучения требуется значительно большее количество. Необходимо создание принципиально новых, более эффективных экспериментальных установок. На проектные работы ушло полгода и в настоящее время в Лаборатории осуществляется проект создания Масс-Анализатора Сверхтяжелых Атомов (MASHA). Аналогов такой экспериментальной установки в мире нет. С вводом ее в действие ученые рассчитывают получать уже десятки атомов СТЭ и исследовать их свойства более широко. Реализуется также проект DRIBs, в котором два мощных ускорителя объединяются в единый комплекс, что позволит ускорять атомы радиоактивных изотопов, в частности олова-132. Это даст принципиально новые возможности синтеза СТЭ.

Минатом подключил к программе свои организации и выделил необходимые финансы (по 15 млн руб. ежегодно в течение 4 лет). Миннауки выделил специальный грант в размере 1 млн руб. От РАО ЕС было получено эксклюзивное право на выделение электроэнергии для питания ускорителей при проведении экспериментов. Американцы из Ливермора прислали бесплатно плутоний-244. Губернатор Московской области Б. В. Громов выделил Объединенному институту ядерных исследований из своего резерва средства для финансирования исследований по сверхтяжелым элементам (10 млн руб. в 2001 г. и 15 млн руб. в 2002 г.). Не вызывает сомнений, что интеллектуальные и технические ресурсы, накопленные в Дубне и других аналогичных центрах России, необходимо использовать для развития современных высокотехнологичных и наукоемких процессов, которые только и могут обеспечить в будущем конкурентоспособность российской продукции на мировом рынке.

Библиография

Bohr N., Wheeler J. The Mechanism of Nuclear Fission//Phys. Rev. 1939. № 56.

Flerov G. N., Petrzhak K. A. Spontaneous fission of 238 U//Phys. Rev. 1940. № 58; J. Phys. USSR. 1940. № 3.

Oganessian Yu. Ts., Yeremin A. V., Popeko A. G. et al. Synthesis of nuclei of superheavy element 114 in reaction induced by 48 Ca//Nature. 1999. № 400.

Oganessian Yu. Ts., Utyonkov V. K., Lobanov Yu. V. et al. The synthesis of superheavy nuclei in the 48 Ca + 244 Pu reaction//Phys. Rev. Lett. 1999. № 83.

Oganessian Yu. Ts., Yeremin A. V., Popeko A. G. et al. Observation of the decay of 292 116//Phys. Rev. 2001. C 63. 011301/1–011301/2.