Стандартная модель: удивительная теория почти всего. Стандартная модель физики частиц Формулы и концепции стандартной модели элементарных частиц

Что за дурацкое название для самой точной научной теории из всех известных человечеству. Более четверти нобелевских премий по физике прошлого века были присуждены работам, которые либо прямо, либо косвенно были связаны со Стандартной моделью. Название у нее, конечно, такое, будто за пару сотен рублей можно купить улучшение. Любой физик-теоретик предпочел бы «удивительную теорию почти всего», каковой она, собственно, и является.

Многие помнят волнение среди ученых и в СМИ, вызванное открытием бозона Хиггса в 2012 году. Но его открытие не стало сюрпризом и не возникло из ниоткуда - оно ознаменовало собой пятидесятилетие череды побед Стандартной модели. Она включает каждую фундаментальную силу, кроме гравитации. Любая попытка опровергнуть ее и продемонстрировать в лаборатории, что ее нужно полностью переработать, - а таких было много - терпела неудачу.

Короче говоря, Стандартная модель отвечает на этот вопрос: из чего все сделано и как все держится вместе?

Мельчайшие строительные блоки

Физики любят простые вещи. Они хотят раздробить все до самой сути, найти самые базовые строительные блоки. Проделать это при наличии сотни химических элементов не так-то просто. Наши предки считали, что все состоит из пяти элементов - земли, воды, огня, воздуха и эфира. Пять намного проще ста восемнадцати. И также неверно. Вы, безусловно, знаете, что мир вокруг нас состоит из молекул, а молекулы состоят из атомов. Химик Дмитрий Менделеев выяснил это в 1860-х годах и представил атомы в таблице элементов, которую сегодня изучают в школе. Но этих химических элементов 118. Сурьма, мышьяк, алюминий, селен… и еще 114.

В 1932 году ученые знали, что все эти атомы состоит из всего трех частиц - нейтронов, протонов и электронов. Нейтроны и протоны тесно связаны друг с другом в ядре. Электроны, в тысячи раз легче их, кружат вокруг ядра на скорости, близкой к световой. Физики Планк, Бор, Шредингер, Гейзенберг и другие представили новую науку - квантовую механику - для объяснения этого движения.

На этом было бы прекрасно остановиться. Всего три частицы. Это даже проще, чем пять. Но как они держатся вместе? Отрицательно заряженные электроны и положительно заряженные протоны скрепляются вместе силами электромагнетизма. Но протоны сбиваются в ядре и их положительные заряды должны расталкивать их прочь. Не помогут даже нейтральные нейтроны.

Что связывает эти протоны и нейтроны вместе? «Божественное вмешательство»? Но даже божественному существу доставило бы проблем следить за каждым из 10 80 протонов и нейтронов во Вселенной, удерживая их силой воли.

Расширяя зоопарк частиц

Между тем природа отчаянно отказывается хранить в своем зоопарке всего три частицы. Даже четыре, потому что нам нужно учесть фотон, частицу света, описанную Эйнштейном. Четыре превратились в пять, когда Андерсон измерил электроны с положительным зарядом - позитроны - которые бьют по Земле из внешнего космоса. Пять стали шестью, когда был обнаружен пион, удерживающий ядро в целом и предсказанный Юкавой.

Затем появился мюон - в 200 раз тяжелее электрона, но в остальном его близнец. Это уже семь. Не так уж и просто.

К 1960-м годам были сотни «фундаментальных» частиц. Вместо хорошо организованной периодической таблицы были только длинные списки барионов (тяжелых частиц вроде протонов и нейтронов), мезонов (вроде пионов Юкавы) и лептонов (легких частиц, таких как электрон и неуловимые нейтрино), без какой-либо организации и принципов устройства.

И в этой пучине родилась Стандартная модель. Не было никакого озарения. Архимед не выпрыгнул из ванной с криком «Эврика!». Нет, вместо этого в середине 1960-х несколько умных людей выдвинули важные предположения, которые превратили эту трясину сперва в простую теорию, а затем в пятьдесят лет экспериментальной проверки и теоретической разработки.

Кварки. Они получили шесть вариантов, которые мы называем ароматами. Как у цветов, только не так вкусно пахнущие. Вместо роз, лилий и лаванды мы получили верхний и нижний, странный и очарованный, прелестный и истинный кварки. В 1964 году Гелл-Манн и Цвейг научили нас смешивать три кварка, чтобы получать барион. Протон ­– это два верхних и один нижний кварк; нейтрон – два нижних и один верхний. Возьмите один кварк и один антикварк – получите мезон. Пион – это верхний или нижний кварк, связанный с верхним или нижним антикварком. Все вещество, с которым мы имеем дело, состоит из верхних и нижних кварков, антикварков и электронов.

Простота. Хоть и не совсем простота, потому что удерживать кварки связанными нелегко. Они соединяются между собой так плотно, что вы никогда не найдете кварка или антикварка, блуждающего самого по себе. Теория этой связи и частицы, которые принимают в ней участие, а именно глюоны, называется квантовой хромодинамикой. Это важная часть Стандартной модели, математически сложная, а местами даже нерешаемая для базовой математики. Физики делают все возможное, чтобы производить вычисления, но иногда математический аппарат оказывается недостаточно разработан.

Еще один аспект Стандартной модели – «модель лептонов». Это название важнейшей статьи 1967 года, написанной Стивеном Вайнбергом, которая объединила квантовую механику с важнейшими знаниями о том, как взаимодействуют частицы, и организовала их в единую теорию. Он включил электромагнетизм, связал его со «слабой силой», которая приводит к определенным радиоактивным распадам, и объяснил, что это разные проявления одной и той же силы. В эту модель был включен механизм Хиггса, дающий массу фундаментальным частицам.

С тех пор Стандартная модель предсказывала результаты экспериментов за результатами, включая открытие нескольких разновидностей кварков и W- и Z-бозонов – тяжелых частиц, которые в слабых взаимодействиях выполняют ту же роль, что фотон в электромагнетизме. Вероятность того, что нейтрино обладают массой, упустили в 1960-х годах, но подтвердили Стандартной моделью в 1990-х годах, через несколько десятилетий.

Обнаружение бозона Хиггса в 2012 году, давно предсказанного Стандартной моделью и долгожданного, не стало, тем не менее, неожиданностью. Зато стало еще одной важной победой Стандартной модели над темными силами, которые физики частиц регулярно ждут на горизонте. Физикам не нравится, что Стандартная модель не соответствует их представлениям о простой, они обеспокоены ее математической непоследовательностью, а также ищут возможность включить гравитацию в уравнение. Очевидно, это выливается в разные теории физики, которая может быть после Стандартной модели. Так появились теории великого объединения, суперсимметрии, техноколор и теория струн.

К сожалению, теории за пределами Стандартной модели не нашли успешных экспериментальных подтверждений и серьезных брешей в Стандартной модели. Спустя пятьдесят лет именно Стандартная модель ближе всех к статусу теории всего. Удивительная теория почти всего.

«Мы задаёмся вопросом, почему группа талантливых и преданных своему делу людей готова посвятит жизнь погоне за такими малюсенькими объектами, которые даже невозможно увидеть? На самом деле, в занятиях физиков элементарных частиц проявляется человеческое любопытство и желание узнать, как устроен мир, в котором мы живём» Шон Кэрролл

Если вы всё ещё боитесь фразы квантовая механика и до сих пор не знаете, что такое стандартная модель - добро пожаловать под кат. В своей публикации я попытаюсь максимально просто и наглядно объяснить азы квантового мира, а так же физики элементарных частиц. Мы попробуем разобраться, в чём основные отличия фермионов и бозонов, почему кварки имеют такие странные названия, и наконец, почему все так хотели найти Бозон Хиггса.

Из чего мы состоим?

Ну что же, наше путешествие в микромир мы начнём с незатейливого вопроса: из чего состоят окружающие нас предметы? Наш мир, как дом, состоит из множества небольших кирпичиков, которые особым образом соединяясь, создают что-то новое, не только по внешнему виду, но ещё и по своим свойствам. На деле, если сильно к ним приглядеться, то можно обнаружить, что различных видов блоков не так уж и много, просто каждый раз они соединяются друг с другом по-разному, образуя новые формы и явления. Каждый блок - это неделимая элементарная частица, о которой и пойдёт речь в моём рассказе.

Для примера, возьмём какое-нибудь вещество, пусть у нас это будет второй элемент периодической системы Менделеева, инертный газ, гелий . Как и остальные вещества во Вселенной, гелий состоит из молекул, которые в свою очередь образованы связями между атомами. Но в данном случае, для нас, гелий немного особенный, потому что он состоит всего из одного атома.

Из чего состоит атом?

Атом гелия, в свою очередь, состоит из двух нейтронов и двух протонов, составляющих атомное ядро, вокруг которого вращаются два электрона. Самое интересное, что абсолютно неделимым здесь является лишь электрон .

Интересный момент квантового мира

Чем меньше масса элементарной частицы, тем больше места она занимает. Именно по этой причине электроны, которые в 2000 раз легче протона, занимают гораздо больше места по сравнению с ядром атома.

Нейтроны и протоны относятся к группе так называемых адронов (частиц, подверженных сильному взаимодействию), а если быть ещё точнее, барионов .

Адроны можно разделить на группы

  • Барионов, которые состоят из трёх кварков
  • Мезонов, которые состоят из пары: частица-античастица

Нейтрон, как ясно из его названия, является нейтрально заряженным, и может быть поделён на два нижних кварка и один верхний кварк. Протон, положительно заряженная частица, делится на один нижний кварк и два верхних кварка.

Да, да, я не шучу, они действительно называются верхний и нижний. Казалось бы, если мы открыли верхний и нижний кварк, да ещё электрон, то сможем с их помощью описать всю Вселенную. Но это утверждение было бы очень далеко от истины.

Главная проблема - частицы должны как-то между собой взаимодействовать. Если бы мир состоял лишь из этой троицы (нейтрон, протон и электрон), то частицы бы просто летали по бескрайним просторам космоса и никогда бы не собирались в более крупные образования, вроде адронов.

Фермионы и Бозоны

Достаточно давно учёными была придумана удобная и лаконичная форма представления элементарных частиц, названная стандартной моделью. Оказывается, все элементарные частицы делятся на фермионы , из которых и состоит вся материя, и бозоны , которые переносят различные виды взаимодействий между фермионами.

Разница между этими группами очень наглядна. Дело в том, что фермионам для выживания по законам квантового мира необходимо некоторое пространство, в то время как их коллеги - бозоны могут спокойно триллионами жить прямо друг на друге.

Фермионы

Группа фермионов, как было уже сказано, создаёт видимую материю вокруг нас. Что бы мы и где не увидели, создано фермионами. Фермионы делятся на кварки , сильно взаимодействующие между собой и запертые внутри более сложных частиц вроде адронов, и лептоны , которые свободно существуют в пространстве независимо от своих собратьев.

Кварки делятся на две группы.

  • Верхнего типа. К кваркам верхнего типа, с зарядом +23, относят: верхний, очарованный и истинный кварки
  • Нижнего типа. К кваркам нижнего типа, с зарядом -13, относят: нижний, странный и прелестный кварки

Истинный и прелестный являются самыми большими кварками, а верхний и нижний - самыми маленькими. Почему кваркам дали такие необычные названия, а говоря более правильно, «ароматы», до сих пор для учёных предмет споров.

Лептоны также делятся на две группы.

  • Первая группа, с зарядом «-1», к ней относят: электрон, мюон (более тяжёлую частицу) и тау-частицу (самую массивную)
  • Вторая группа, с нейтральным зарядом, содержит: электронное нейтрино, мюонное нейтрино и тау-нейтрино

Нейтрино - есть малая частица вещества, засечь которую практически невозможно. Её заряд всегда равен 0.

Возникает вопрос, не найдут ли физики ещё несколько поколений частиц, которые будут еще более массивными, по сравнению с предыдущими. На него ответить трудно, однако теоретики считают, что поколения лептонов и кварков исчерпываются тремя.

Не находите никакого сходства? И кварки, и лептоны делятся на две группы, которые отличаются друг от друга зарядом на единицу? Но об этом позже...

Бозоны

Без них бы фермионы сплошным потоком летали по вселенной. Но обмениваясь бозонами, фермионы сообщают друг другу какой-либо вид взаимодействия. Сами бозоны же с друг другом не взаимодействуют.

Взаимодействие, передаваемое бозонами, бывает:

  • Электромагнитным , частицы - фотоны. С помощью этих безмассовых частиц передаётся свет.
  • Сильным ядерным , частицы - глюоны. С их помощью кварки из ядра атома не распадаются на отдельные частицы.
  • Слабым ядерным , частицы - W и Z бозоны. С их помощью фермионы перекидываются массой, энергией, и могут превращаться друг в друга.
  • Гравитационным , частицы - гравитоны . Чрезвычайно слабая в масштабах микромира сила. Становится видимой только на сверхмассивных телах.

Оговорка о гравитационном взаимодействии.
Существование гравитонов экспериментально ещё не подтверждено. Они существуют лишь в виде теоретической версии. В стандартной модели в большинстве случаев их не рассматривают.

Вот и всё, стандартная модель собрана.


Проблемы только начались

Несмотря на очень красивое представление частиц на схеме, осталось два вопроса. Откуда частицы берут свою массу и что такое Бозон Хиггса , который выделяется из остальных бозонов.

Для того, что бы понимать идею применения бозона Хиггса, нам необходимо обратиться к квантовой теории поля. Говоря простым языком, можно утверждать, что весь мир, вся Вселенная, состоит не из мельчайших частиц, а из множества различных полей: глюонного, кваркового, электронного, электромагнитного и.т.д. Во всех этих полях постоянно возникают незначительные колебания. Но наиболее сильные из них мы воспринимаем как элементарные частицы. Да и этот тезис весьма спорный. С точки зрения корпускулярно-волнового дуализма, один и тот же объект микромира в различных ситуациях ведёт себя то как волна, то как элементарная частица, это зависит лишь от того, как физику, наблюдающему за процессом, удобнее смоделировать ситуацию.

Поле Хиггса

Оказывается, существует так называемое поле Хиггса, среднее значение которого не хочет стремиться к нулю. В результате чего, это поле старается принять некоторое постоянное ненулевое значение во всей Вселенной. Поле составляет вездесущий и постоянный фон, в результате сильных колебаний которого и появляется Бозон Хиггса.
И именно благодаря полю Хиггса, частицы наделяются массой.
Масса элементарной частицы, зависит от того, насколько сильно она взаимодействует с полем Хиггса , постоянно пролетая внутри него.
И именно из-за Бозона Хиггса, а точнее из-за его поля, стандартная модель имеет так много похожих групп частиц. Поле Хиггса вынудило сделать множество добавочных частиц, таких, например, как нейтрино.

Итоги

То, что было рассказано мною, это самые поверхностные понятие о природе стандартной модели и о том, зачем нам нужен Бозон Хиггса. Некоторые учёные до сих пор в глубине души надеются, что частица, найденная в 2012 году и похожая на Бозон Хиггса в БАКе, была просто статистической погрешностью. Ведь поле Хиггса нарушает многие красивые симметрии природы, делая расчёты физиков более запутанными.
Некоторые даже считают, что стандартная модель доживает свои последние годы из-за своего несовершенства. Но экспериментально это не доказано, и стандартная модель элементарных частиц остаётся действующим образцом гения человеческой мысли.

Вся материя состоит из кварков, лептонов и частиц - переносчиков взаимодействий.

Стандартной моделью сегодня принято называть теорию, наилучшим образом отражающую наши представления об исходном материале, из которого изначально построена Вселенная. Она же описывает, как именно материя образуется из этих базовых компонентов, и силы и механизмы взаимодействия между ними.

Со структурной точки зрения элементарные частицы, из которых состоят атомные ядра (нуклоны ), и вообще все тяжелые частицы - адроны (барионы и мезоны ) - состоят из еще более простых частиц, которые принято называть фундаментальными. В этой роли по-настоящему фундаментальных первичных элементов материи выступают кварки , электрический заряд которых равен 2/3 или –1/3 единичного положительного заряда протона. Самые распространенные и легкие кварки называют верхним и нижним и обозначают, соответственно, u (от английского up ) и d (down ). Иногда их же называют протонным и нейтронным кварком по причине того, что протон состоит из комбинации uud , а нейтрон - udd. Верхний кварк имеет заряд 2/3; нижний - отрицательный заряд –1/3 . Поскольку протон состоит из двух верхних и одного нижнего, а нейтрон - из одного верхнего и двух нижних кварков, вы можете самостоятельно убедиться, что суммарный заряд протона и нейтрона получается строго равным 1 и 0, и удостовериться, что в этом Стандартная модель адекватно описывает реальность. Две другие пары кварков входят в состав более экзотических частиц. Кварки из второй пары называют очарованным - c (от charmed ) и странным - s (от strange ). Третью пару составляют истинный - t (от truth , или в англ. традиции top ) и красивый - b (от beauty , или в англ. традиции bottom ) кварки. Практически все частицы, предсказываемые Стандартной моделью и состоящие из различных комбинаций кварков, уже открыты экспериментально.

Другой строительный набор состоит из кирпичиков, называемых лептонами. Самый распространенный из лептонов - давно нам знакомый электрон , входящий в структуру атомов, но не участвующий в ядерных взаимодействиях, ограничиваясь межатомными. Помимо него (и парной ему античастицы под названием позитрон ) к лептонам относятся более тяжелые частицы - мюон и тау-лептон с их античастицами. Кроме того, каждому лептону сопоставлена своя незаряженная частица с нулевой (или практически нулевой) массой покоя; такие частицы называются, соответственно, электронное, мюонное или таонное нейтрино .

Итак, лептоны, подобно кваркам, также образуют три «семейных пары». Такая симметрия не ускользнула от наблюдательных глаз теоретиков, однако убедительного объяснения ей до сих пор не предложено. Как бы то ни было, кварки и лептоны представляют собой основной строительный материал Вселенной.

Чтобы понять оборотную сторону медали - характер сил взаимодействия между кварками и лептонами, - нужно понять, как современные физики-теоретики интерпретируют само понятие силы. В этом нам поможет аналогия. Представьте себе двух лодочников, гребущих на встречных курсах по реке Кэм в Кэмбридже. Один гребец от щедрости душевной решил угостить коллегу шампанским и, когда они проплывали друг мимо друга, кинул ему полную бутылку шампанского. В результате действия закона сохранения импульса, когда первый гребец кинул бутылку, курс его лодки отклонился от прямолинейного в противоположную сторону, а когда второй гребец поймал бутылку, ее импульс передался ему, и вторая лодка также отклонилась от прямолинейного курса, но уже в противоположную сторону. Таким образом, в результате обмена шампанским обе лодки изменили направление. Согласно законам механики Ньютона это означает, что между лодками произошло силовое взаимодействие. Но ведь лодки не вступали между собой в прямое соприкосновение? Здесь мы и видим наглядно, и понимаем интуитивно, что сила взаимодействия между лодками была передана носителем импульса - бутылкой шампанского. Физики назвали бы ее переносчиком взаимодействия.

В точности так же и силовые взаимодействия между частицами происходят посредством обмена частицами-переносчиками этих взаимодействий. Фактически, различие между фундаментальными силами взаимодействия между частицами мы и проводим лишь постольку, поскольку в роли переносчиков этих взаимодействий выступают разные частицы. Таких взаимодействий четыре: сильное (именно оно удерживает кварки внутри частиц), электромагнитное , слабое (именно оно приводит к некоторым формам радиоактивного распада) игравитационное. Переносчиками сильного цветового взаимодействия являются глюоны , не обладающие ни массой, ни электрическим зарядом. Этот тип взаимодействия описывается квантовой хромодинамикой . Электромагнитное взаимодействие происходит посредством обмена квантами электромагнитного излучения, которые называются фотонами и также лишены массы. Слабое взаимодействие, напротив, передается массивными векторными или калибровочными бозонами , которые «весят» в 80-90 раз больше протона, - в лабораторных условиях их впервые удалось обнаружить лишь в начале 1980-х годов. Наконец, гравитационное взаимодействие передается посредством обмена не обладающими собственной массой гравитонами - этих посредников пока что экспериментально обнаружить не удалось.

В рамках Стандартной модели первые три типа фундаментальных взаимодействий удалось объединить, и они более не рассматриваются по отдельности, а считаются тремя различными проявлениями силы единой природы. Возвращаясь к аналогии, предположим, что другая пара гребцов, проплывая друг мимо друга по реке Кэм, обменялась не бутылкой шампанского, а всего лишь стаканчиком мороженого. От этого лодки также отклонятся от курса в противоположные стороны, но значительно слабее. Стороннему наблюдателю может показаться, что в этих двух случаях между лодками действовали разные силы: в первом случае произошел обмен жидкостью (бутылку я предлагаю во внимание не принимать, поскольку большинству из нас интересно ее содержимое), а во втором - твердым телом (мороженым). А теперь представьте, что в Кембридже в тот день стояла редкостная для северных мест летняя жара, и мороженое в полете растаяло. То есть, достаточно некоторого повышения температуры, чтобы понять, что, фактически, взаимодействие не зависит от того, жидкое или твердое тело выступает в роли его переносчика. Единственная причина, по которой нам представлялось, что между лодками действуют различные силы, состояла во внешнем отличии переносчика-мороженого, вызванном недостаточной для его плавления температурой. Поднимите температуру - и силы взаимодействия предстанут наглядно едиными.

Силы, действующие во Вселенной, также сплавляются воедино при высоких энергиях (температурах) взаимодействия, после чего различить их невозможно. Первыми объединяются (именно так это принято называть) слабое ядерное и электромагнитное взаимодействия. В результате мы получаем так называемое электрослабое взаимодействие , наблюдаемое даже лабораторно при энергиях, развиваемых современными ускорителями элементарных частиц. В ранней Вселенной энергии были столь высоки, что в первые 10 –10 секунды после Большого взрыва не было грани между слабыми ядерными и электромагнитными силами. Лишь после того, как средняя температура Вселенной понизилась до 10 14 K, все четыре наблюдаемые сегодня силовые взаимодействия разделились и приняли современный вид. Пока температура была выше этой отметки, действовали лишь три фундаментальные силы: сильного, объединенного электрослабого и гравитационного взаимодействий.

Объединение электрослабого и сильного ядерного взаимодействия происходит при температурах порядка 10 27 К. В лабораторных условиях такие энергии сегодня недостижимы. Самый мощный современный ускоритель - строящийся в настоящее время на границе Франции и Швейцарии Большой адронный коллайдер (Large Hadron Collider) - сможет разгонять частицы до энергий, которые составляют всего 0,000000001% от необходимой для объединения электрослабого и сильного ядерного взаимодействий. Так что, вероятно, экспериментального подтверждения этого объединения ждать нам придется долго. Таких энергий нет и в современной Вселенной, однако в первые 10 –35 с ее существования температура Вселенной была выше 10 27 К, и во Вселенной действовало всего две силы - электросильного и гравитационного взаимодействия. Теории, описывающие эти процессы, называют «теориями Великого объединения» (ТВО). Напрямую проверить ТВО нельзя, но они дают определенные прогнозы и относительно процессов, протекающих при более низких энергиях. На сегодняшний день все предсказания ТВО для относительно низких температур и энергий подтверждаются экспериментально.

Итак, Стандартная модель, в обобщенном виде, представляет собой теорию строения Вселенной, в которой материя состоит из кварков и лептонов, а сильные, электромагнитные и слабые взаимодействия между ними описываются теориями великого объединения. Такая модель, очевидно, не полна, поскольку не включает гравитацию. Предположительно, более полная теория со временем все-таки будет разработана (см. Универсальные теории), а на сегодня Стандартная модель - это лучшее из того, что мы имеем.

«Элементы»

В физике элементарными частицами называли физические объекты в масштабах ядра атома, которые невозможно разделить на составные части. Однако, на сегодня, ученым все же удалось расщепить некоторые из них. Структуру и свойства этих мельчайших объектов изучает физика элементарных частиц.

О наименьших частицах, составляющих всю материю, было известно еще в древности. Однако, основоположниками так званого «атомизма» принято считать философа Древней Греции Левкиппа и его более известного ученика — Демокрита. Предполагается, что второй и ввел термин «атом». С древнегреческого «atomos» переводится как «неделимый», что определяет взгляды древних философов.

Позднее стало известно, что атом все же можно разделить на два физических объекта - ядро и электрон. Последний впоследствии и стал первой элементарной частицей, когда в 1897-м году англичанин Джозеф Томсон провел эксперимент с катодными лучами и выявил, что они представляют собой поток одинаковых частиц с одинаковыми массой и зарядом.

Параллельно с работами Томсона, занимающийся исследованием рентгеновского излучения Анри Беккерель проводит опыты с ураном и открывает новый вид излучения. В 1898 году французская пара физиков - Мария и Пьер Кюри изучают различные радиоактивные вещества, обнаруживая то же самое радиоактивное излучение. Позже будет установлено, что оно состоит из альфа (2 протона и 2 нейтрона) и бета-частиц (электроны), а Беккерель и Кюри получат Нобелевскую премию. Проводя свои исследования с такими элементами как уран, радий и полоний, Мария Склодовская-Кюри не предпринимала никаких мер безопасности, в том числе не использовала даже перчатки. Как следствие в 1934 году ее настигла лейкемия. В память о достижениях великого ученого, открытый парой Кюри элемент, полоний, был назван в честь родины Марии - Polonia, с латинского - Польша.

Фотография с V Сольвеевского конгресса 1927 год. Попробуйте найди всех ученых из этой статьи на данном фото.

Начиная с 1905-го года, Альберт Эйнштейн посвящает свои публикации несовершенству волновой теории света, постулаты которой расходились с результатами экспериментов. Что впоследствии привело выдающегося физика к идее о «световом кванте» — порции света. Позже, в 1926-м году, он был назван как «фотон», в переводе с греческого «phos» («свет»), американским физиохимиком — Гилбертом Н. Льюисом.

В 1913 году Эрнест Резерфорд, британский физик, основываясь на результатах уже проведенных на то время экспериментов, отметил, что массы ядер многих химических элементов кратны массе ядра водорода. Поэтому он предположил, что ядро водорода является составляющей ядер других элементов. В своем эксперименте Резерфорд облучал альфа-частицами атом азота, который в результате излучил некую частицу, названную Эрнестом как «протон», с др. греческого «протос» (первый, основной). Позже было экспериментально подтверждено, что протон - это ядро водорода.

Очевидно, протон, не единственная составная часть ядер химических элементов. К такой мысли приводит тот факт, что два протона в ядре отталкивались бы, и атом мгновенно распадался. Поэтому Резерфорд выдвинул гипотезу о наличии еще одной частицы, которая имеет массу, равную массе протона, но является незаряженной. Некоторые опыты ученых по взаимодействию радиоактивных и более легких элементов, привели их к открытию еще одного нового излучения. В 1932-м году Джеймс Чедвик определил, что оно состоит из тех самых нейтральных частиц, которые назвал нейтронами.

Таким образом, были открыты наиболее известные частицы: фотон, электрон, протон и нейтрон.

Далее открытия новых субъядерных объектов становились все более частым событием, и на данный момент известно около 350 частиц, которые принято полагать «элементарными». Те из них, которые до сих пор не удалось расщепить, считаются бесструктурными и называются «фундаментальными».

Что такое спин?

Прежде чем переходить к дальнейшим инновациям в области физики, следует определиться с характеристиками всех частиц. К наиболее известным, не считая массы и электрического заряда, относится также и спин. Данная величина называется иначе как «собственный момент импульса» и никоим образом не связана с перемещением субъядерного объекта как целого. Ученым удалось обнаружить частицы со спином 0, ½, 1, 3/2 и 2. Чтобы представить наглядно, хоть и упрощенно, спин, как свойство объекта, рассмотрим следующий пример.

Пусть у предмета имеется спин равный 1. Тогда такой объект при повороте на 360 градусов возвратится в исходное положение. На плоскости этим предметом может быть карандаш, который после разворота на 360 градусов окажется в исходном положении. В случае с нулевым спином, при любом вращении объекта он будет выглядеть всегда одинаково, к примеру, одноцветный мячик.

Для спина ½ потребуется предмет, сохраняющий свой вид при развороте на 180 градусов. Им может быть все тот же карандаш, только симметрично наточенный с обеих сторон. Спин равный 2 потребует сохранения формы при повороте на 720 градусов, а 3/2 - 540.

Данная характеристика имеет очень большое значение для физики элементарных частиц.

Стандартная модель частиц и взаимодействий

Имея внушительный набор микрообъектов, составляющих окружающий мир, ученые решили их структурировать, так образовалась известная всем теоретическая конструкция под названием «Стандартная модель». Она описывает три взаимодействия и 61 частицу при помощи 17-ти фундаментальных, некоторые из которых были ею предсказаны задолго до открытия.

Три взаимодействия таковы:

  • Электромагнитное. Оно происходит между электрически заряженными частицами. В простом случае, известном со школы, — разноименно заряженные объекты притягиваются, а одноименно - отталкиваются. Происходит это посредством, так называемого переносчика электромагнитного взаимодействия - фотона.
  • Сильное, иначе - ядерное взаимодействие. Как ясно из названия, его действие распространяется на объекты порядка ядра атома, оно отвечает за притяжение протонов, нейтронов и прочих частиц, также состоящих из кварков. Сильное взаимодействие переносится при помощи глюонов.
  • Слабое. Действует на расстояниях в тысячу меньших размера ядра. В таком взаимодействии принимают участия лептоны и кварки, а также их античастицы. При этом в случае слабого взаимодействия они могут перевоплощаться друг в друга. Переносчиками являются бозоны W+, W− и Z0.

Так Стандартная модель сформировалась следующим образом. Она включает шесть кварков, из которых состоят все адроны (частицы, подверженные сильному взаимодействию):

  • Верхний (u);
  • Очарованный (c);
  • Истинный (t);
  • Нижний (d);
  • Странный (s);
  • Прелестный (b).

Видно, что эпитетов физикам не занимать. Другие 6 частиц - лептоны. Это фундаментальные частицы со спином ½, которые не принимают участие в сильном взаимодействии.

  • Электрон;
  • Электронное нейтрино;
  • Мюон;
  • Мюонное нейтрино;
  • Тау-лептон;
  • Тау-нейтрино.

А третьей группой Стандартной модели являются калибровочные бозоны, которые имеют спин равный 1 и представляются переносчиками взаимодействий:

  • Глюон - сильное;
  • Фотон - электромагнитное;
  • Z-бозон — слабое;
  • W-бозон - слабое.

К ним также относится и недавно обнаруженный , частица со спином 0, которая, упрощенно говоря, наделяет все другие субъядерные объекты инертной массой.

В результате, согласно Стандартной модели, наш мир выглядит таким образом: все вещество состоит из 6 кварков, образующих адроны, и 6 лептонов; все эти частицы могут участвовать в трех взаимодействиях, переносчиками которых являются калибровочные бозоны.

Недостатки Стандартной модели

Однако, еще до открытия бозона Хиггса - последней частицы, предсказываемой Стандартной моделью, ученые вышли за ее пределы. Ярким примером тому есть т.н. «гравитационное взаимодействие», которое сегодня находится наравне с другими. Предположительно, переносчиком его есть частица со спином 2, которая не имеет массы, и которую физикам еще не удалось обнаружить — «гравитон».

Мало того, Стандартная модель описывает 61 частицу, а на сегодняшний день человечеству известно уже более 350 частиц. Это означает, что на достигнутом работа физиков-теоретиков не окончена.

Классификация частиц

Чтобы упростить себе жизнь, физики сгруппировали все частицы в зависимости от особенностей их строения и прочих характеристик. Классификация бывает по следующим признакам:

  • Время жизни.
    1. Стабильные. В их числе протон и антипротон, электрон и позитрон, фотон, а также гравитон. Существование стабильных частиц не ограничено временем, до тех пор, пока они находятся в свободном состоянии, т.е. не взаимодействуют с чем-либо.
    2. Нестабильные. Все остальные частицы спустя некоторое время распадаются на свои составные части, потому называются нестабильными. Например, мюон живет всего лишь 2,2 микросекунды, а протон — 2,9.10*29 лет, после чего может распасться на позитрон и нейтральный пион.
  • Масса.
    1. Безмассовые элементарные частицы, которых всего три: фотон, глюон и гравитон.
    2. Массивные частицы - все остальные.
  • Значение спина.
    1. Целый спин, в т.ч. нулевой, имеют частицы, которые называются бозоны.
    2. Частицы с полуцелым спином — фермионы.
  • Участие во взаимодействиях.
    1. Адроны (структурные частицы) - субъядерные объекты, что принимают участие во всех четырех типах взаимодействий. Ранее упоминалось, что они складываются с кварков. Адроны делятся на два подтипа: мезоны (целый спин, являются бозонами) и барионы (полуцелый спин — фермионы).
    2. Фундаментальные (бесструктурные частицы). К ним относятся лептоны, кварки и калибровочные бозоны (читайте ранее - «Стандартная модель..»).

Ознакомившись с классификацией всех частиц, можно, к примеру, точно определить некоторые из них. Так нейтрон является фермионом, адроном, а точнее барионом, и нуклоном, то есть имеет полуцелый спин, состоит из кварков и участвует в 4-х взаимодействиях. Нуклон же - это общее название для протонов и нейтронов.

  • Интересно, что противники атомизма Демокрита, который предсказывал существование атомов, заявляли, что любое вещество в мире делится до бесконечности. В какой-то мере они могут оказаться правыми, так как ученым уже удалось разделить атом на ядро и электрон, ядро на протон и нейтрон, а их в свою очередь на кварки.
  • Демокрит предполагал, что атомы имеют четкую геометрическую форму, и потому «острые» атомы огня - обжигают, шершавые атомы твердых тел крепко скрепляются своими выступами, а гладкие атомы воды проскальзывают при взаимодействии, иначе - текут.
  • Джозеф Томсон составил собственную модель атома, который представлялся ему как положительно заряженное тело, в которое как бы «воткнуты» электроны. Его модель получила название «пудинг с изюмом» (Plum pudding model).
  • Кварки получили свое название благодаря американскому физику Мюррею Гелл-Манну. Ученый хотел использовать слово, похожее на звук кряканья утки (kwork). Но в романе Джеймса Джойса «Поминки по Финнегану» встретил слово «quark», в строке «Три кварка для мистера Марка!», смысл которого точно не определен и возможно, что Джойс использовал его просто для рифмы. Мюррей решил назвать частицы этим словом, так как на то время было известно лишь три кварка.
  • Хотя фотоны, частицы света, являются безмассовыми, вблизи черной дыры, кажется, что они меняют свою траекторию, притягиваясь к ней при помощи гравитационного взаимодействия. На самом же деле сверхмассивное тело искривляет пространство-время, из-за чего любые частицы, в том числе и не имеющие массы, меняют свою траекторию в сторону черной дыры (см. ).
  • Большой адронный коллайдер именно потому «адронный», что сталкивает два направленных пучка адронов, частиц размерами порядка ядра атома, которые участвуют во всех взаимодействиях.

Стандартная модель элементарных частиц считается крупнейшим достижением физики второй половины XX века. Но что лежит за ее пределами?

Стандартная модель (СМ) элементарных частиц, базирующаяся на калибровочной симметрии , — великолепное творение Мюррея Гелл-Манна, Шелдона Глэшоу, Стивена Вайнберга, Абдуса Салама и целой плеяды блестящих ученых. СМ прекрасно описывает взаимодействия между кварками и лептонами на дистанциях порядка 10−17 м (1% диаметра протона), которые можно изучать на современных ускорителях. Однако она начинает буксовать уже на расстояниях в 10−18 м и тем более не обеспечивает продвижения к заветному планковскому масштабу в 10−35 м.

Считается, что именно там все фундаментальные взаимодействия сливаются в квантовом единстве. На смену СМ когда-нибудь придет более полная теория, которая, скорее всего, тоже не станет последней и окончательной. Ученые пытаются найти замену Стандартной модели. Многие считают, что новая теория будет построена путем расширения списка симметрий, образующих фундамент СМ. Один из наиболее перспективных подходов к решению этой задачи был заложен не только вне связи с проблемами СМ, но даже до ее создания.


Частицы, подчиняющиеся статистике Ферми-Дирака (фермионы с полуцелым спином) и Бозе-Эйнштейна (бозоны с целым спином). В энергетическом колодце все бозоны могут занимать один и тот же нижний энергетический уровень, образуя конденсат Бозе-Эйнштейна. Фермионы же подчиняются принципу запрета Паули, и поэтому две частицы с одинаковыми квантовыми числами (в частности, однонаправленными спинами) не могут занимать один и тот же энергетический уровень.

Смесь противоположностей

В конце 1960-х старший научный сотрудник теоротдела ФИАН Юрий Гольфанд предложил своему аспиранту Евгению Лихтману обобщить математический аппарат, применяемый для описания симметрий четырехмерного пространства-времени специальной теории относительности (пространства Минковского).

Лихтман обнаружил, что эти симметрии можно объединить с внутренними симметриями квантовых полей с ненулевыми спинами. При этом образуются семейства (мультиплеты), объединяющие частицы с одинаковой массой, обладающие целым и полуцелым спином (иначе говоря, бозоны и фермионы). Это было и новым, и непонятным, поскольку те и другие подчиняются разным типам квантовой статистики. Бозоны могут накапливаться в одном и том же состоянии, а фермионы следуют принципу Паули, строго запрещающему даже парные союзы этого рода. Поэтому возникновение бозонно-фермионных мультиплетов выглядело математической экзотикой, не имеющей отношения к реальной физике. Так это и было воспринято в ФИАН. Позже в своих «Воспоминаниях» Андрей Сахаров назвал объединение бозонов и фермионов великой идеей, однако в то время она не показалась ему интересной.

За пределами стандарта

Где же пролегают границы СМ? «Стандартная модель согласуется почти со всеми данными, полученными на ускорителях высоких энергий. — объясняет ведущий научный сотрудник Института ядерных исследований РАН Сергей Троицкий. — Однако в ее рамки не вполне укладываются результаты экспериментов, свидетельствующие о наличии массы у двух типов нейтрино, а возможно, что и у всех трех. Этот факт означает, что СМ нуждается в расширении, а в каком именно, никто толком не знает. На неполноту СМ указывают и астрофизические данные. Темная материя, а на нее приходится более пятой части массы Вселенной, состоит из тяжелых частиц, которые никак не вписываются в СМ. Кстати, эту материю точнее было бы называть не темной, а прозрачной, поскольку она не только не излучает света, но и не поглощает его. Кроме того, СМ не объясняет почти полного отсутствия антивещества в наблюдаемой Вселенной».
Есть также возражения эстетического порядка. Как отмечает Сергей Троицкий, СМ устроена весьма некрасиво. Она содержит 19 численных параметров, которые определяются экспериментом и, с точки зрения здравого смысла, принимают весьма экзотические значения. Например, вакуумное среднее поля Хиггса, несущее ответственность за массы элементарных частиц, равно 240 ГэВ. Непонятно, почему этот параметр в 1017 раз меньше параметра, определяющего гравитационное взаимодействие. Хотелось бы иметь более полную теорию, которая даст возможность определить это отношение из каких-то общих принципов.
СМ не объясняет и огромной разницы между массами самых легких кварков, из которых сложены протоны и нейтроны, и массой top-кварка, превышающей 170 ГэВ (во всем остальном он ничем не отличается от u-кварка, который почти в 10 тысяч раз легче). Откуда берутся вроде бы одинаковые частицы со столь различными массами, пока непонятно.

Лихтман в 1971 году защитил диссертацию, а потом ушел в ВИНИТИ и почти забросил теорфизику. Гольфанда уволили из ФИАН по сокращению штатов, и он долго не мог найти работы. Однако сотрудники Украинского физико-технического института Дмитрий Волков и Владимир Акулов тоже открыли симметрию между бозонами и фермионами и даже воспользовались ею для описания нейтрино. Правда, никаких лавров ни москвичи, ни харьковчане тогда не обрели. Лишь в 1989 году Гольфанд и Лихтман получили премию АН СССР по теоретической физике имени И.Е. Тамма. В 2009 году Владимир Акулов (сейчас он преподает физику в Техническом колледже Городского университета Нью-Йорка) и Дмитрий Волков (посмертно) удостоились Национальной премии Украины за научные исследования.


Элементарные частицы Стандартной модели делятся на бозоны и фермионы по типу статистики. Составные частицы — адроны — могут подчиняться либо статистике Бозе-Эйнштейна (к таким относятся мезоны — каоны, пионы), либо статистике Ферми-Дирака (барионы — протоны, нейтроны).

Рождение суперсимметрии

На Западе смеси бозонных и фермионных состояний впервые появились в зарождающейся теории, представляющей элементарные частицы не точечными объектами, а вибрациями одномерных квантовых струн.

В 1971 году была построена модель, в которой с каждой вибрацией бозонного типа сочеталась парная ей фермионная вибрация. Правда, эта модель работала не в четырехмерном пространстве Минковского, а в двумерном пространстве-времени струнных теорий. Однако уже в 1973 году австриец Юлиус Весс и итальянец Бруно Зумино доложили в ЦЕРН (а годом позже опубликовали статью) о четырехмерной суперсимметричной модели с одним бозоном и одним фермионом. Она не претендовала на описание элементарных частиц, но демонстрировала возможности суперсимметрии на наглядном и чрезвычайно физичном примере. Вскоре эти же ученые доказали, что обнаруженная ими симметрия является расширенной версией симметрии Гольфанда и Лихтмана. Вот и получилось, что в течение трех лет суперсимметрию в пространстве Минковского независимо друг от друга открыли три пары физиков.

Результаты Весса и Зумино подтолкнули разработку теорий с бозонно-фермионными смесями. Поскольку эти теории связывают калибровочные симметрии с симметриями пространства-времени, их назвали суперкалибровочными, а потом суперсимметричными. Они предсказывают существование множества частиц, ни одна из которых еще не открыта. Так что суперсимметричность реального мира все еще остается гипотетической. Но даже если она и существует, то не может быть строгой, иначе электроны обладали бы заряженными бозонными родичами с точно такой же массой, которых легко можно было бы обнаружить. Остается предположить, что суперсимметричные партнеры известных частиц чрезвычайно массивны, а это возможно лишь при нарушении суперсимметрии.


Суперсимметричная идеология вошла в силу в середине 1970-х годов, когда уже существовала Стандартная модель. Естественно, что физики принялись строить ее суперсимметричные расширения, иными словами, вводить в нее симметрии между бозонами и фермионами. Первая реалистичная версия суперсимметричной СМ, получившая название минимальной (Minimal Supersymmetric Standard Model, MSSM), была предложена Говардом Джорджи и Савасом Димопулосом в 1981 году. Фактически это та же Стандартная модель со всеми ее симметриями, но к каждой частице добавлен партнер, чей спин отличается от ее спина на ½, — бозон к фермиону и фермион к бозону.

Поэтому все взаимодействия СМ остаются на месте, но обогащаются взаимодействиями новых частиц со старыми и друг с другом. Позднее возникли и более сложные суперсимметричные версии СМ. Все они сопоставляют уже известным частицам тех же партнеров, но различным образом объясняют нарушения суперсимметрии.

Частицы и суперчастицы

Названия суперпартнеров фермионов строятся с помощью приставки «с» — сэлектрон, смюон, скварк. Суперпартнеры бозонов обзаводятся окончанием «ино»: фотон — фотино, глюон — глюино, Z-бозон — зино, W-бозон — вино, бозон Хиггса — хиггсино.

Спин суперпартнера любой частицы (за исключением бозона Хиггса) всегда на ½ меньше ее собственного спина. Следовательно, партнеры электрона, кварков и прочих фермионов (а также, естественно, и их античастиц) имеют нулевой спин, а партнеры фотона и векторных бозонов с единичным спином — половинный. Это связано с тем, что количество состояний частицы тем больше, чем больше ее спин. Поэтому замена вычитания на сложение привела бы к появлению избыточных суперпартнеров.


Слева — Стандартная модель (СМ) элементарных частиц: фермионы (кварки, лептоны) и бозоны (переносчики взаимодействий). Справа — их суперпартнеры в Минимальной суперсимметричной стандартной модели, MSSM: бозоны (скварки, слептоны) и фермионы (суперпартнеры переносчиков взаимодействий). Пять бозонов Хиггса (на схеме обозначены одним синим символом) также имеют своих суперпартнеров — пятерку хиггсино.

Возьмем для примера электрон. Он может находиться в двух состояниях — в одном его спин направлен параллельно импульсу, в другом — антипараллельно. С точки зрения СМ это разные частицы, поскольку они не вполне одинаково участвуют в слабых взаимодействиях. Частица с единичным спином и ненулевой массой может пребывать в трех различных состояниях (как говорят физики, имеет три степени свободы) и потому не годится в партнеры электрону. Единственным выходом будет приписать каждому из состояний электрона по одному суперпартнеру с нулевым спином и считать эти сэлектроны различными частицами.

Суперпартнеры бозонов Стандартной модели возникают несколько хитрее. Поскольку масса фотона равна нулю, то и при единичном спине он имеет не три, а две степени свободы. Поэтому ему без проблем сопоставляется фотино, суперпартнер с половинным спином, который, как и электрон, обладает двумя степенями свободы. По этой же схеме возникают глюино. С хиггсами ситуация посложнее. В MSSM есть два дублета хиггсовских бозонов, которым соответствует четверка суперпартнеров — два нейтральных и два разноименно заряженных хиггсино. Нейтралы смешиваются разными способами с фотино и зино и образуют четверку физически наблюдаемых частиц с общим именем нейтралино. Подобные же смеси со странным для русского уха названием чарджино (по-английски — chargino) образуют суперпартнеры положительного и отрицательного W-бозонов и пары заряженных хиггсов.


Своей спецификой обладает и ситуация с суперпартнерами нейтрино. Если бы эта частица не имела массы, ее спин всегда был бы направлен противоположно импульсу. Поэтому у безмассового нейтрино можно было бы ожидать наличие единственного скалярного партнера. Однако реальные нейтрино все же не безмассовы. Не исключено, что существуют также нейтрино с параллельными импульсами и спинами, но они очень тяжелы и еще не обнаружены. Если это действительно так, то каждой разновидности нейтрино соответствует свой суперпартнер.

Как говорит профессор физики Мичиганского университета Гордон Кейн, самый универсальный механизм нарушения суперсимметрии связан с тяготением.

Однако величина его вклада в массы суперчастиц еще не выяснена, а оценки теоретиков противоречивы. Кроме того, он вряд ли является единственным. Так, Next-to-Minimal Supersymmetric Standard Model, NMSSM, вводит еще два хиггсовских бозона, вносящих свои добавки в массу суперчастиц (а также увеличивает число нейтралино с четырех до пяти). Такая ситуация, отмечает Кейн, резко умножает число параметров, заложенных в суперсимметричные теории.


Даже минимальное расширение Стандартной модели требует около сотни дополнительных параметров. Этому не стоит удивляться, поскольку все эти теории вводят множество новых частиц. По мере появления более полных и согласованных моделей число параметров должно уменьшиться. Как только детекторы Большого адронного коллайдера отловят суперчастицы, новые модели не заставят себя ждать.

Иерархия частиц

Суперсимметричные теории позволяют устранить ряд слабых мест Стандартной модели. Профессор Кейн на первое место ставит загадку, связанную с бозоном Хиггса, которую называют проблемой иерархии .

Эта частица приобретает массу в ходе взаимодействия с лептонами и кварками (подобно тому, как они сами обретают массы при взаимодействии с хиггсовским полем). В СМ вклады от этих частиц представлены расходящимися рядами с бесконечными суммами. Правда, вклады бозонов и фермионов имеют разные знаки и в принципе могут почти полностью погасить друг друга. Однако такое погашение должно быть практически идеальным, поскольку масса хиггса, как теперь известно, равна лишь 125 ГэВ. Это не невозможно, но крайне маловероятно.


Для суперсимметричных теорий в этом нет ничего страшного. При точной суперсимметрии вклады обычных частиц и их суперпартнеров должны полностью компенсировать друг друга. Поскольку суперсимметрия нарушена, компенсация оказывается неполной, и бозон Хиггса обретает конечную и, главное, вычисляемую массу. Если массы суперпартнеров не слишком велики, она должна измеряться одной-двумя сотнями ГэВ, что и соответствует действительности. Как подчеркивает Кейн, физики стали серьезно относиться к суперсимметрии именно тогда, когда было показано, что она решает проблему иерархии.

На этом возможности суперсимметрии не заканчиваются. Из СМ вытекает, что в области очень высоких энергий сильное, слабое и электромагнитное взаимодействия хотя и обладают примерно одинаковой силой, но никогда не объединяются. А в суперсимметричных моделях при энергиях порядка 1016 ГэВ такое объединение имеет место, и это выглядит намного естественней. Эти модели предлагают также и решение проблемы темной материи. Суперчастицы при распадах порождают как суперчастицы, так и обычные частицы — естественно, меньшей массы. Однако суперсимметрия, в отличие от СМ, допускает быстрый распад протона, которого, на наше счастье, реально не происходит.


Протон, а вместе с ним и весь окружающий мир можно спасти, предположив, что в процессах с участием суперчастиц сохраняется квантовое число R-четности, которое для обычных частиц равно единице, а для суперпартнеров — минус единице. В таком случае самая легкая суперчастица должна быть полностью стабильной (и электрически нейтральной). Распасться на суперчастицы она не может по определению, а сохранение R-четности запрещает ей распадаться на частицы. Темная материи может состоять именно из таких частиц, возникших сразу вслед за Большим взрывом и избежавших взаимной аннигиляции.

В ожидании экспериментов

«Незадолго до открытия бозона Хиггса на основе М-теории (наиболее продвинутой версии теории струн) его массу предсказали с ошибкой всего в два процента! — говорит профессор Кейн. — Были также вычислены массы сэлектронов, смюонов и скварков, которые оказались слишком велики для современных ускорителей — порядка нескольких десятков ТэВ. Суперпартнеры фотона, глюона и прочих калибровочных бозонов намного легче, и поэтому есть шансы их обнаружить на БАК».

Конечно, правильность этих вычислений ничем не гарантирована: М-теория — дело тонкое. И все же, можно ли обнаружить на ускорителях следы суперчастиц? «Массивные суперчастицы должны распадаться сразу после рождения. Эти распады происходят на фоне распадов обычных частиц, и однозначно выделить их очень непросто, — объясняет главный научный сотрудник Лаборатории теоретической физики ОИЯИ в Дубне Дмитрий Казаков. — Было бы идеально, если бы суперчастицы проявляли себя уникальным образом, который невозможно спутать ни с чем другим, но теория этого не предсказывает.


Приходится анализировать множество различных процессов и искать среди них те, которые не вполне объясняются Стандартной моделью. Эти поиски пока не увенчались успехом, но у нас уже есть ограничения на массы суперпартнеров. Те из них, которые участвуют в сильных взаимодействиях, должны тянуть как минимум на 1 ТэВ, в то время как массы прочих суперчастиц могут варьировать между десятками и сотнями ГэВ.

В ноябре 2012 года на симпозиуме в Киото были доложены результаты экспериментов на БАК, в ходе которых впервые удалось надежно зарегистрировать очень редкий распад Bs-мезона на мюон и антимюон. Его вероятность составляет приблизительно три миллиардных, что хорошо соответствует предсказаниям СМ. Поскольку ожидаемая вероятность этого распада, вычисленная на основе MSSM, может оказаться в несколько раз большей, кое-кто решил, что с суперсимметрией покончено.

Однако эта вероятность зависит от нескольких неизвестных параметров, которые могут давать как большой, так и малый вклад в конечный результат, здесь еще много неясного. Поэтому ничего страшного не произошло, и слухи о кончине MSSM сильно преувеличены. Но из этого вовсе не следует, что она неуязвима. БАК пока не работает на полную мощность, он выйдет на нее лишь через два года, когда энергию протонов доведут до 14 ТэВ. И вот если тогда не найдется никаких проявлений суперчастиц, то MSSM, скорее всего, умрет естественной смертью и настанет время новых суперсимметричных моделей.

Числа Грассмана и супергравитация

Еще до создания MSSM суперсимметрию объединили с гравитацией. Неоднократное применение преобразований, связывающих бозоны и фермионы, перемещает частицу в пространстве-времени. Это позволяет связать суперсимметрии и деформации пространственно-временной метрики, которые, согласно общей теории относительности, и есть причина тяготения. Когда физики это поняли, они начали строить суперсимметричные обобщения ОТО, которые называются супергравитацией. Эта область теоретической физики активно развивается и сейчас.
Тогда же выяснилось, что суперсимметричным теориям необходимы экзотические числа, придуманные в XIX столетии немецким математиком Германом Гюнтером Грассманом. Их можно складывать и вычитать как обычные, но произведение таких чисел изменяет знак при перестановке сомножителей (поэтому квадрат и вообще любая целая степень грассманова числа равна нулю). Естественно, что функции от таких чисел нельзя дифференцировать и интегрировать по стандартным правилам математического анализа, нужны совершенно другие приемы. И они, к счастью для суперсимметричных теорий, уже были найдены. Их придумал в 1960-е годы выдающийся советский математик из МГУ Феликс Березин, который создал новое направление — суперматематику.

Однако есть и другая стратегия, не связанная с БАК. Пока в ЦЕРН работал электронно-позитронный коллайдер LEP, на нем искали наиболее легкие из заряженных суперчастиц, чьи распады должны порождать наилегчайших суперпартнеров. Эти частицы-предшественники легче зарегистрировать, поскольку они заряжены, а легчайший суперпартнер нейтрален. Эксперименты на LEP показали, что масса таких частиц не превышает 104 ГэВ. Это не так уж много, но их трудно обнаружить на БАК из-за высокого фона. Поэтому сейчас началось движение за постройку для их поиска сверхмощного электрон-позитронного коллайдера. Но это очень дорогая машина, в скором времени ее уж точно не построят».


Закрытия и открытия

Однако, как считает профессор теоретической физики Университета Миннесоты Михаил Шифман, измеренная масса бозона Хиггса слишком велика для MSSM, и эта модель, скорее всего, уже закрыта:

«Правда, ее пытаются спасти с помощью различных надстроек, но они столь неизящны, что имеют малые шансы на успех. Возможно, что другие расширения сработают, но когда и как, пока неизвестно. Но этот вопрос выходит за рамки чистой науки. Нынешнее финансирование физики высоких энергий держится на надежде обнаружить на БАК что-то действительно новое. Если этого не произойдет, финансирование урежут, и денег не хватит для строительства ускорителей нового поколения, без которых эта наука не сможет реально развиваться». Так что суперсимметричные теории по‑прежнему подают надежды, но ждут не дождутся вердикта экспериментаторов.