Название cu nh3 4 so4. Получение ортоборной кислоты. Комплексообразующая способность s-, р- и d- элементов

катионные 2

анионные 3-

нейтральные 0

    По характеру лигандов различают:

акво- [Сu(H 2 O) 4 ]SO 4

аммино-SO 4

ацидо- К 2

гидроксо-K 2

По структуре внутренней сферы различают внутрикомплексные(циклические) соединения. Например, в живом организме встречаются клешневидные (хелатные) пятичленные циклы. Они образуются катионом металла и ɑ-аминокислотами. К ним относятся гемоглобин, хлорофилл, витамин В 12 .

При составлении названия комплексных соединений руководствуются следующими правилами:

    Сначала называют внутреннюю сферу.

    Составные части её называют в следующей последовательности: лиганды анионы, лиганды – молекулы, комплексообразователь. Записывают формулу в обратной последовательности.

    К названиям лигандов – ионов добавляют окончание «о» (Сl - хлоро-, СN - циано-). Нейтральные молекулы сохраняют свои названия, за исключением Н 2 О – акво, NН 3 – амин.

    Число лигандов указывают греческими числительными: ди, три-, тетра-, пента-, гекса- и т.д.

    В последнюю очередь называют ионы внешней сферы.

Пример: катионные –SO 4 – тетраамминокупрат (II) сульфат; анионные – Na 3 –гексанитрокобольтат (III) натрия; нейтральные Cl 2 - дихлородиамминоплатина.

Комплексообразующая способность s-, р- и d- элементов

Комплексообразующая способность катионов определяется следующими факторами:

Заряд катиона, радиус катиона и электронная конфигурация катиона.

Чем больше заряд катиона и меньше радиус, тем прочнее связь комплексообразователя с лигандами. Поэтому катионы s- элементов (К + , Nа + , Са +2 , Мg +2 и др.) обладающие относительно большим радиусом и малым зарядом, имеют низкую комплексообразующую способность. Катионы d-элементов (Со +3 , Рt +4 , Сr +3 и др.), имеющие, как правило небольшой радиус и высокий заряд, являются хорошими комплексообразователями.

d-элементы имеют большое количество валентных орбиталей, среди которых имеются свободные орбитали и с неподелёнными электронными парами. Поэтому они одновременно могут быть и донорами и акцепторами. Если аналогичной возможностью обладает и лиганд, то одновременно с σ- связью (лиганд донор, а комплексообразователь является акцептором), образуюется и π-связь (лиганд акцептор, а комплексообразователь – донор). При этом происходит увеличение кратности связи, что обуславливает высокую прочность d- элементов со многими лигандами. Эта связь называется дативной связью.

Характер химической связи в комплексных соединениях.

Связь между комплексообразователем и лигандами осуществляется, посредством перекрывания электронных облаков. Связь, образованная по обменному механизму соответствует вернеровской главной валентности. Связь, образованная по донорно акцепторному механизму – побочной валентности; при этом лиганд является донором, а комплексообразователь акцептором.

Связь по донорно – акцепторному механизму может возникнуть и между нейтральными молекулами, если одна имеет атом со свободной орбиталью, а другая не поделённую электронную пару.

Следовательно: причина комплексообразования – валентная ненасыщенность атомов. Увеличение валентной насыщенности атомов в процессе комплексообразования ведёт к устойчивости комплексов.

Поскольку комплексообразователь в большинстве случаев предоставляет для образования связей неравноценные орбитали, то происходит их гибридизация, а тип гибридизации определяет геометрию молекул.

sp линейная молекула +

sp 3 тетраэдр или квадрат 2+

II.1. Понятие и определение.

Комплексные соединения – наиболее многочисленный класс неорганических соединений. Дать краткое и исчерпывающее определение этим соединениям трудно. Комплексные соединения также называют координационными. В химии координационных соединений переплетаются органическая и неорганическая химия.

До конца XIX века изучение комплексных соединений носило чисто описательный характер. 1893 год швейцарский химик Альфред Вернер создал координационную теорию. Суть ее заключается в следующем: в комплексных соединениях имеется правильное геометрическое размещение атомов или групп атомов, называемых лигандами или аддендами, вокруг центрального атома – комплексообразователя.

Таким образом, химия комплексных соединений изучает ионы и молекулы, состоящие из центральной частицы и координированных вокруг нее лигандов. Центральная частица – комплексообразователь и непосредственно связанные с ней лиганды, образуют внутреннюю сферу комплекса. Для неорганических лигандов, чаще всего, число их совпадает с координационным числом центральной частицы. Таким образом, координационное число – это общее число нейтральных молекул или ионов (лигандов), связанных с центральным атомом в комплексе

Ионы, находящиеся за пределами внутренней сферы, образуют внешнюю сферу, комплексного соединения. В формулах внутреннюю сферу заключают в квадратные скобки.

K 4 4- - внутренняя сфера или комплексный ион

ион-комплексообразователь координационное

Комплексообразователями служат:

1) положительные ионы металлов (чаще d-элементы): Ag + , Fe 2+, Fe 3+ , Cu 2+ , Al 3+ , Co 3+ ; и др. (ионы- комплексообразователи).

2) реже - нейтральные атомы металлов, относящиеся к d-элементам: (Сo, Fe, Mn и др.)

3) некоторые атомы неметаллов с различной положительной степенью окисления - B +3, Si +4 , P +5 и др.

Лигандами могут быть:

1) отрицательнозаряженные ионы (OH - , Hal - , CN - -цианогруппа, SCN - - тиоцианогруппа, NH 2 - -аминогруппа, и др.)

2) полярные молекулы: H 2 O (название лиганда - «аква»), NH 3 («аммин»),

CO («карбонил»).

Таким образом, комплексными соединениями (координационными соединениями) называются сложные химические соединения, в составе которых имеются комплексные ионы, образованные центральным атомом в определенной степени окисления (или с определенной валентностью) и связанными с ним лигандами.

II.2. Классификация

I. По характеру лигандов:

1. Аквакомплексы (H 2 O)

2. Гидроксокомплексы (OH)

3. Амминкомплексы (NH 3) - аммиакаты

4. Ацидокомплексы (с кислотными остатками - Сl - , SCN - , S 2 O 3 2- и другие)

5. Карбонилкомплексы (СО)

6. Комплексы с органическими лигандами (NH 2 -CH 2 -CH 2 -NH 2 и др.)

7. Анионгалогенаты (Na )

8. Аминокомплексы (NH 2)

II. По заряду комплексного иона:

1. Катионного типа - заряд комплексного иона - положительный

2. Анионного типа - заряд комплексного иона - отрицательный.

Для правильного написания комплексного соединения необходимо знать степень окисления центрального атома, его координациооное число, природу лигандов и заряд комплексного иона.

II.3. Координационное число можно определить как число σ - связей между нейтральными молекулами или ионами (лигандами) и центральным атомом в комплексе.

Величина координационного числа определяется, главным образом, размерами, зарядом и строением электронной оболочки комплексообразователя. Наиболее часто встречается координационное число 6. Оно характерно для следующих ионов: Fe 2+ , Fe 3+ , Co 3+ , Ni 3+ , Pt 4+ , Al 3+ , Cr 3+ , Mn 2+ , Sn 4+ .

K 3 , Na 3 , Cl 3

гексацианоферрат (Ш) гексанитрокобальтат(Ш) гексааквахрома (Ш)хлорид

калия натрия

Координационное число 4 встречается у 2-хзарядных ионов и у алюминия или золота: Hg 2+ , Cu 2+ , Pb 2+ , Pt 2+ , Au 3+ , Al 3+ .

(OH) 2 - тетрааммин меди(II) гидроксид;

Na 2 – тетрагидроксокупрат (II) натрия

K 2 – тетраиодомеркурат (II) калия;

H – тетрахлороаурат(III) водорода.

Часто координациооное число определяется как удвоенная степень окисления иона-комплексообразователя: у Hg 2+ , Cu 2+ , Pb 2+ - координационное число равно 4; у Ag + , Cu + - координационное число равно 2.

Для определения, расположения иоов во внутренней или внешней сфере нужно провести качественные реакции. Например, у K 3 -гексацианоферрата(III) калия. Известно, что ион железа (+3) образует с роданид (тиоционат)- анионом роданид железа (+3) темно-красного цвета.

Fe 3+ +3 NH 4 SCN à Fe (SCN) 3 + 3NH 4 +

При добавлении раствора роданида аммония или калия к раствору гексацианоферрата(III) калия окраски не наблюдается. Это говорит об отсeтствии ионов железа Fe 3+ в растворе в достаточном количестве. Центральный атом связан с лигандами ковалентной полярной связью (донорно-акцепторный механизм образования связи), поэтому реакция ионного обмена не идет. Наоборот, внешняя и внутренняя сферы связаны ионной связью.

II.4. Строение комплексного иона с точки зрения электронного строения комплексообразователя.

Разберем строение катиона тетраамминмеди (II):

а) электронная формула атома меди:

2 8 18 1 ↓ ↓ ↓ ↓ ↓

б) электронная формула катиона Cu 2+ :


Cu 2+)))) ↓ ↓ ↓ ↓ 4p 0

4s o:NH 3:NH 3: NH 3: NH 3

CuSO 4 + 4: NH 3 -à SO 4

SO 4 à 2+ + SO 4 2-

ионная связь

ков. связь

по донорно- акцепторному механизму.

Упражнение для самостоятельного решения:

Изобразите строение комплексного иона 3- по алгоритму:

а) напишите электронную формулу атома железа;

б) напишите электронную формулу иона железа Fe 3+ , убрав электроны с 4s подуровня и 1 электрон с 3d- подуровня;

в) перепишите электронную формулу иона еще раз, переведя электроны 3d- подуровня в возбужденное состояние путем их спаривания в ячейках этого подурвня

г) подсчитайте число всех свободных ячеек на 3d, 4s, 4p - подуровнях

д) расположите под ними цианид-анионы CN - и проведите стрелки от ионов к пустым ячейкам.

II.5. Определение заряда комплексообразователя и комплексного иона:

1.Заряд комплексного иона равен заряду внешней сферы с обратным знаком; он также равен сумме заряда комплексообразователя и всех лигандов.

K 2 +2+ (- 1) ·4 =х х = -2

2. Заряд комплексообразователя равен алгебраической сумме зарядов лигандов и внешней сферы (с обратным знаком).

Cl х +0·2 +(–1)·2 = 0; х=2-1= +1

SO 4 х+ 4· 0 -2 = 0 х = +2

3.Чем больше заряд центрального атома и меньше заряд лиганда, тем больше координационное число.

II.6. Номенклатура.

Существует несколько способов названий комплексных соединений. Выберем более простой с использованием валентности (или степени окисления) центрального атома

II.6.1. Название комплексных соединений катионного типа:

Комплексные соединения относятся к катионному типу, если заряд комплексного иона положительный.

При названии комплексных соединений:

1) сначала называется координационное число с помощью греческих приставок (гекса, пента, три);

2) затем, заряженные лиганды с добавлением окончания «о»;

3) затем, нейтральные лиганды (без окончания «о»);

4) комплексообразователь на русском языке в родительном падеже, указывается его валентность или степень окисления и после этого называется анион. Аммиак – лиганд называется «аммин» без «о», вода –«аква»

SO 4 тетрааммин меди (II) сульфат;

Cl диаммин серебра (I) хлорид;

Cl 3 – гексаиодокобальта (Ш) хлорид;

Cl – оксалатопентаакваалюминия(Ш) хлорид

(окалат - двухзарядный анион щавелевой кислоты);

Cl 3 –гексаакважелеза(Ш) хлорид.

II.6.2. Номенклатура комплексных соединений анионного типа.

Называется катион, координационное число, лиганды и, затем, комплексообразователь - центральный атом. Комплексообразователь называется на латинском языке в именительном падеже с окончанием «ат».

K 3 – калия гексафтороферрат(Ш);

Na 3 – натрия гексанитрокобальтат (III);

NH 4 –аммония дитиоцианодикарбонил меркуриат (I)

Нейтральный комплекс: – пентакарбонил железо.

ПРИМЕРЫ И ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Пример 1. Классифицировать, полностью охарактеризовать и дать названия следующим комплексным соединениям: а) K 3 –; б) Cl ; в) .

Решение и ответ:

1) K 3 - 3 иона К + - внешняя сфера, ее общий заряд +3, 3- - внутренняя сфера, ее общий заряд равен заряду внешней сферы, взятому с противоположным знаком - (3-)

2) Комплексное соединение анионного типа, так как заряд внутренней сферы - отрицательный;

3) Центральный атом - комплексообразователь - ион серебра Ag +

4) Лиганды - два двухзарядных остатка тиосерной кислоты H 2 S 2 O 3 , относится к ацидокомплексам

5) Координационное число комплексообразователя в данном случае как исключение равно 4 (у двух остатков кислоты 4 валентных σ - связи без 4-х катионов водорода);

6) Заряд комплексообразователя равен +1:

K 3 : +1 · 3 + Х + (-2) · 2 = 0 à X= +1

7) Название: – калия дитиосульфатоаргентат (I).

1) Cl - 1 ион - Сl - - внешняя сфера, ее общий заряд -1, - - внутренняя сфера, ее общий заряд равен заряду внешней сферы, взятому с противоположным знаком - (3+)

2) Комплексное соединение катионного типа, так как заряд внутренней сферы - положительный.

3) Центральный атом - комплексообразователь - ион кобальта Со, вычисляем его заряд:

: Х + 0 · 4 + (-1) · 2 = +1 à Х = 0 +2 +1 = +3

4) Комплексное соединение смешанного типа, так как в его составе разные лиганды; ацидокомплекс (Cl - - остаток хлороводородной кислоты) и амминкамплекс - аммиакатный (NH 3 - аммиак-нейтральное соединение)

6) Название – дихлоротетраамминкобальта(III) хлорид.

1) - внешней сферы нет

2) Комплексное соединение нейтрального типа, так как заряд внутренней сферы = 0.

3) Центральный атом - комплексообразователь - атом вольфрама,

его заряд =0

4) Карбонилкомплекс, так как лигандом является нейтральная частица - карбонил - СО;

5) Координационное число комплексообразователя равно 6 ;

6) Название: – гексакарбонилвольфрам

Задание 1. Охарактеризуйте комплексные соединения:

а) Li 3 Cr (OH) 6 ]

б) I 2

в) [ Pt Cl 2 (NH 3) 2 ] и дайте им названия.

Задание 2. Назовите комплексные соединения: NO 3 ,

K 3 , Na 3 , H, Fe 3 [ Cr (CN) 6 ] 2

Комплексные соединения

Конспект урока-лекции

Цели. Сформировать представления о составе, строении, свойствах и номенклатуре комплексных соединений; развить навыки определения степени окисления у комплексообразователя, составления уравнений диссоциации комплексных соединений.
Новые понятия: комплексное соединение, комплексообразователь, лиганд, координационное число, внешняя и внутренняя сферы комплекса.
Оборудование и реактивы. Штатив с пробирками, концентрированный раствор аммиака, растворы сульфата меди(II), нитрата серебра, гидроксида натрия.

ХОД УРОКА

Лабораторный опыт. К раствору сульфата меди(II) прилить раствор аммиака. Жидкость окрасится в интенсивный синий цвет.

Что произошло? Химическая реакция? До сих пор мы не знали, что аммиак может реагировать с солью. Какое вещество образовалось? Каковы его формула, строение, название? К какому классу соединений его можно отнести? Может ли аммиак реагировать с другими солями? Есть ли соединения, аналогичные этому? Ответить на эти вопросы нам и предстоит сегодня.

Чтобы лучше изучить свойства некоторых соединений железа, меди, серебра, алюминия, нам потребуются знания о комплексных соединениях.

Продолжим наш опыт. Полученный раствор разделим на две части. К одной части прильем щелочь. Осадка гидроксида меди(II) Cu(OH) 2 не наблюдается, следовательно, в растворе нет двухзарядных ионов меди или их слишком мало. Отсюда можно заключить, что ионы меди вступают во взаимодействие с прибавленным аммиаком и образуют какие-то новые ионы, которые не дают нерастворимого соединения с ионами OH – .

В то же время ионы остаются неизменными. В этом можно убедиться, прибавив к аммиачному раствору раствор хлорида бария. Тотчас же выпадет белый осадок BaSO 4 .

Исследованиями установлено, что темно-синяя окраска аммиачного раствора обусловлена присутствием в нем сложных ионов 2+ , образовавшихся путем присоединения к иону меди четырех молекул аммиака. При испарении воды ионы 2+ связываются с ионами , и из раствора выделяются темно-синие кристаллы, состав которых выражается формулой SO 4 H 2 O.

Комплексными называют соединения, содержащие сложные ионы и молекулы, способные к существованию как в кристаллическом виде, так и в растворах.

Формулы молекул или ионов комплексных соединений обычно заключают в квадратные скобки. Комплексные соединения получают из обычных (некомплексных) соединений.

Примеры получения комплексных соединений

Строение комплексных соединений рассматривают на основе координационной теории, предложенной в 1893 г. швейцарским химиком Альфредом Вернером, лауреатом Нобелевской премии. Его научная деятельность проходила в Цюрихском университете. Ученый синтезировал много новых комплексных соединений, систематизировал ранее известные и вновь полученные комплексные соединения и разработал экспериментальные методы доказательства их строения.

А.Вернер
(1866–1919)

В соответствии с этой теорией в комплексных соединениях различают комплексообразователь , внешнюю и внутреннюю сферы . Комплексообразователем обычно является катион или нейтральный атом. Внутреннюю сферу составляет определенное число ионов или нейтральных молекул, которые прочно связаны с комплексообразователем. Их называют лигандами . Число лигандов определяет координационное число (КЧ) комплексообразователя.

Пример комплексного соединения

Рассмотренное в примере соединение SO 4 H 2 O или CuSO 4 5Н 2 О – это кристаллогидрат сульфата меди(II).

Определим составные части других комплексных соединений, например K 4 .
(Справка. Вещество с формулой HCN – это синильная кислота. Соли синильной кислоты называют цианидами.)

Комплексообразователь – ион железа Fe 2+ , лиганды – цианид-ионы СN – , координационное число равно шести. Все, что записано в квадратных скобках, – внутренняя сфера. Ионы калия образуют внешнюю сферу комплексного соединения.

Природа связи между центральным ионом (атомом) и лигандами может быть двоякой. С одной стороны, связь обусловлена силами электростатического притяжения. С другой – между центральным атомом и лигандами может образоваться связь по донорно-акцепторному механизму по аналогии с ионом аммония. Во многих комплексных соединениях связь между центральным ионом (атомом) и лигандами обусловлена как силами электростатического притяжения, так и связью, образующейся за счет неподеленных электронных пар комплексообразователя и свободных орбиталей лигандов.

Комплексные соединения, имеющие внешнюю сферу, являются сильными электролитами и в водных растворах диссоциируют практически нацело на комплексный ион и ионы внешней сферы. Например:

SO 4 2+ + .

При обменных реакциях комплексные ионы переходят из одних соединений в другие, не изменяя своего состава:

SO 4 + BaCl 2 = Cl 2 + BaSO 4 .

Внутренняя сфера может иметь положительный, отрицательный или нулевой заряд.

Если заряд лигандов компенсирует заряд комплексообразователя, то такие комплексные соединения называют нейтральными или комплексами-неэлектролитами: они состоят только из комплексообразователя и лигандов внутренней сферы.

Таким нейтральным комплексом является, например, .

Наиболее типичными комплексообразователями являются катионы d -элементов.

Лигандами могут быть:

а) полярные молекулы – NH 3 , Н 2 О, CO, NO;
б) простые ионы – F – , Cl – , Br – , I – , H – , H + ;
в) сложные ионы – CN – , SCN – , NO 2 – , OH – .

Pассмотрим таблицу, в которой приведены координационные числа некоторых комплексообразователей.

Номенклатура комплексных соединений. В соединении сначала называют анион, а затем катион. При указании состава внутренней сферы прежде всего называют анионы, прибавляя к латинскому названию суффикс -о- , например: Cl – – хлоро, CN – – циано, OH – – гидроксо и т.д. Далее называют нейтральные лиганды и в первую очередь аммиак и его производные. При этом пользуются терминами: для координированного аммиака – аммин , для воды – аква . Число лигандов указывают греческими словами: 1 – моно, 2 – ди, 3 – три, 4 – тетра, 5 – пента, 6 – гекса. Затем переходят к названию центрального атома. Если центральный атом входит в состав катионов, то используют русское название соответствующего элемента и в скобках указывают его степень окисления (римскими цифрами). Если центральный атом содержится в анионе, то употребляют латинское название элемента, а в конце прибавляют окончание -ат . В случае неэлектролитов степень окисления центрального атома не приводят, т.к. она однозначно определяется из условия электронейтральности комплекса.

Примеры. Чтобы назвать комплекс Сl 2 , определяют степень окисления (С.О.)
х комплексообразователя – иона Cu х + :

1 x + 2 (–1) = 0, x = +2, C.O.(Cu) = +2.

Аналогично находят степень окисления иона кобальта:

y + 2 (–1) + (–1) = 0, y = +3, С.О.(Со) = +3.

Чему равно координационное число кобальта в этом соединении? Сколько молекул и ионов окружает центральный ион? Координационное число кобальта равно шести.

Название комплексного иона пишут в одно слово. Степень окисления центрального атома обозначают римской цифрой, помещенной в круглые скобки. Например:

Cl 2 – хлорид тетраамминмеди(II),
NO 3 нитрат дихлороакватриамминкобальта(III),
K 3 – гексацианоферрат(III) калия,
K 2 – тетрахлороплатинат(II) калия,
– дихлоротетраамминцинк,
H 2 – гексахлорооловянная кислота.

На примере нескольких комплексных соединений определим структуру молекул (ион-комплексообразователь, его С.О., координационное число, лиганды, внутреннюю и внешнюю сферы), дадим название комплексу, запишем уравнения электролитической диссоциации.

K 4 – гексацианоферрат(II) калия,

K 4 4K + + 4– .

H – тетрахлорозолотая кислота (образуется при растворении золота в «царской водке»),

H H + + –.

OH – гидроксид диамминсеребра(I) (это вещество участвует в реакции «серебряного зеркала»),

OH + + OH – .

Na – тетрагидроксоалюминат натрия,

Na Na + + – .

К комплексным соединениям относятся и многие органические вещества, в частности, известные вам продукты взаимодействия аминов с водой и кислотами. Например, соли хлорид метиламмония и хлорид фениламмония являются комплексными соединениями. Согласно координационной теории они имеют следующее строение:

Здесь атом азота – комплексообразователь, атомы водорода при азоте, радикалы метил и фенил – лиганды. Вместе они образуют внутреннюю сферу. Во внешней сфере находятся хлорид-ионы.

Многие органические вещества, имеющие большое значение в жизнедеятельности организмов, представляют собой комплексные соединения. К ним относятся гемоглобин, хлорофилл, ферменты и др.

Комплексные соединения находят широкое применение:

1) в аналитической химии для определения многих ионов;
2) для разделения некоторых металлов и получения металлов высокой степени чистоты;
3) в качестве красителей;
4) для устранения жесткости воды;
5) в качестве катализаторов важных биохимических процессов.

Комплексные соединения металлов

Металлы в живых системах, как правило, существуют в составе различных комплексных соединений с биолигандами. Поэтому это важнейшее свойство металлов - их способность образовывать разнообразные комплексные структуры - будет рассмотрено в первую очередь на отдельных примерах.

1. Аквокомплексы

В водных растворах катионы d-металлов в свободном виде (в том числе и в организме) существуют в виде аквокомплексов n + , которые обычно обозначаются как Ме n + или Ме п+ гидр." Аквокомплексы некоторых металлов, в частности, меди(П), марганца(П), серебра(1), достаточно устойчивы, поэтому соли этих металлов не подвергаются гидролизу.

2. Аммиакаты

Аммиачные комплексы - хорошие модели для понимания структур, связанных с образованием биологических соединений, содержащих в своем составе аминогруппы, Рассмотрим реакции взаимодействия в растворе ионов металлов с аммиаком на примере элементов подгрупп меди и цинка.

А. Образование аммиаката меди(II).

2+ (голубой)+ 4NH 3  2+ (синий) +4H 2 0

В молекулярном виде этот процесс можно представить следующим образом:

SO 4 +4NH 3  S0 4 +4H 2 O

И упрощенно, без отражения в записи образования аквокомплекса, уравнение примет вид:

В дальнейшем при написании реакций в ионном или молекулярном виде мы будем записывать ионы металлов упрощенно Ме n +, подразумевая под этим гидратированные ионы.

CuSO 4 + 4NH 3  SO 4

Важным аспектом поведения "биокомплексов", т.е. комплексов в живых системах, является их устойчивость. Поэтому важно знать факторы, влияющие на устойчивость комплексных систем и возможные пути их разрушения.

Причиной разрушения комплекса может быть выведение комплексообразователя (Сu 2+) из внутренней сферы комплекса и связывание его в виде труднорастворимого соединения (CuS в первой реакции) или выведение лигандов (NНз) и связывание их в более устойчивое соединение (ион NH 4 + во второй реакции).

Б. Растворение хлорида серебра в растворе избытка аммиака с образованием аммиаката серебра.

AgCl + 2NH 3 (избыток)--> Cl(бесцветный)

Данный комплекс также может быть разрушен несколькими способами.

В. Взаимодействие солей цинка и кадмия с аммиаком также приводит к образованию аммиачных комплексов.

Г. Реакция хлорида ртути(II) (сулемы) с аммиаком завершается образованием осадка белого цвета - хлорида аминортути (белый преципитат - антисептик), который не является комплексным соедине­нием.

HgCl 2 + 2NH 3 -> Cl-Hg-NH 2  + NH 4 C1

3. Хелатные комплексы с аминокислотами

Многие металлоферменты, в которых ионы металла связываются с белком через кислород карбоксильных групп и азот аминогрупп, представляют собой биокластеры (белковые комплексы) - устойчивые хелатные соединения.

Процесс взаимодействия аквокомплексов биометаллов с аминокисло­тами, приводящий к таким структурам, сопровождается резким возраста­нием энтропии системы (AS > 0) из-за значительного увеличения числа частиц (энтропийный эффект). Например, в случае ионов меди(II) и глицина 1:

Хелатный (энтропийный) эффект - увеличение энтропии и образование пяти- и шестичленных циклов - причина относительно более высокой устойчивости хелатных соединений по сравнению с аналогичными комплексами металлов с монодентатными лигандами или с хелатообразующими реагентами, но с меньшим числом хелатных циклов.

Заметим, что токсичность соединений меди обусловлена не только связыванием тиольных (см. выше), но и аминогрупп белков, что приводит к нарушению ферментативной активности, и, следовательно, нормальной жизнедеятельности.

4. Хелатные комплексы с этилендиаминтетрауксусной кислотой (ЭДТА). трилоном Б (Nа 2 ЭДТА). пентацином - комплексонами, применяе­мыми в получившем широкое распространение методе хелатотерапии.

На этой схеме трилон Б показан как тетрадентатный лиганд, но следует иметь в виду, что этот комплексен способен образовывать шесть связей с комплексообразователем, и более правильно записывать конечный продукт в ином виде.

5. Макроциклические комплексы

В основе многих биоактивных соединений лежат комплексы на базе макрогетероциклов. Примеры таких структур рассмотрены ниже. А. Порфириновый цикл.

Хлорофиллы (a , b ): Me = Mg 2+ , X и Y - отсутствуют.

Гем-белки (гемоглобин, миоглобин, цитохромы, ферменты - каталаза, пероксидаза): Me = Fe 2+ (Fe 3+); X - Н 2 О, О 2 , СО, CN - ; Y - органический остаток.

Б. Корриновый цикл (похож на порфирин, отличается несколькими деталями).

Витамин В 12 (фактор роста, стимулятор кроветворения): Me = Со 3+ , X = СN, Y - органический остаток.

В. Мембране/активные комплексы.

Среди природных комплексных соединений особое место занимают макрокомплексы на основе циклических полипептидов, содержащих внутренние полости определенных размеров, в которых находятся нес­колько кислородсодержащих групп, способных связывать катионы тех металлов, размеры которых соответствуют размерам полости. Такие структуры, находясь в биологических мембранах, обеспечивают транспорт ионов через мембраны и поэтому называются ионофорами.

Природными ионофорами, выполняющими ионно-транспортные функ­ции, являются антибиотики: валиномицин и нонактин.

Моделями природных ионофоров являются краун-эфиры и криптанды. Первые из них избирательно взаимодействуют со щелочными металлами, вторые - со щелочноземельными металлами.

Простейшие краун-эфиры имеют общую формулу (СН 2 СН 2 О) n .

Устойчивость комплексов с краун-эфирами связана с размерами ионов металлов и размерами цикла. Li + связывается прочнее с краун-4 (число «4» указывает количество атомов кислорода, которое содержится в цикле молекулы краун-эфира), Na + - с краун-5, K + - с краун-6, Cs + - с краун-8.

Криптанды - макробициклические лиганды - наиболее эффективно связывают ионы щелочноземельных металлов, могут растворить даже сульфат бария.

6. Комплексные соединения, лежащие в основе качественных реакций на ионы Fe 2+ . Fe 3+ . Co 2+ . Ni 2+ . Hg 2+

Качественной реакцией на ион Fe 2- является взаимодействие с гекса-цианоферратом(Ш) калия (красной кровяной солью). При этом образуется синий осадок - гексацианоферрат(Ш) калия-железа(II) (турнбулева синь).

FeSO 4 (II) + K 3 (III) -> KFe (III)(синий) + K 2 SO 4

Качественными реакциями на ион Fe 3+ являются:

Взаимодействие с гексацианоферратом(II) калия (желтой кровяной солью).

При этом образуется синий осадок - гексацианоферрат(Ш) калия-железа(II) (берлинская лазурь).

FeCl 3 + K 4 -> KFe + ЗКС1

Следует отметить, что в этом случае, в отличие от предыдущего, идет окислительно-восстановительный процесс, в котором хлорид железа(III) выступает в роли окислителя, так как его окислительно-восстано­вительный потенциал [ф°(Fe 3+ /Fe 2+) = + 0,77 В] больше окислительно-восстановительного потенциала комплексного иона - гексацианоферра-та(II) {ф° 3- / 4 ~ = + 0,36 В}, который является восстанови­телем. Таким образом, осадки турнбулевой сини и берлинской лазури являются идентичными не только по цвету, но и по химической структуре.

Взаимодействие с роданидом калия.

В этом случае образуется комплекс красного цвета - триаквотритио-цианатожелезо(III).

3+ (желтый) + 3SCN -  (красный)+ ЗН 2 О

Качественной реакцией на ион Со 2+ является взаимодействие с родани­дом аммония, при этом образуется тетраизотиоцианатокобальтат(II) аммония синего цвета, который устойчив только в органическом раство­рителе, например, в амиловом спирте.

[Со (Н 2 О) 4 ] 2+ + 4NCS -  2- (синий)+ 4Н 2 О

Качественной реакцией на ион Ni 2+ является реакция Чугаева - взаимодействие с диметилглиоксимом, при этом образуется хелатное соединение ярко-красного цвета - диметилглиоксимат никеля. Реакцию проводят в растворе аммиака. Она очень чувствительна, используется в. токсикологии и судебной медицине для обнаружения никеля.

Качественной реакцией на ион ртути(II) является его взаимодействие с раствором иодида калия. Сначала выпадает оранжевый осадок иодида ртути(П), который растворяется в избытке иодида калия с образованием бесцветного комплексного соединения - тетраиодомеркурата(II) калия.

HgCl 2 + 2KI -> HgI 2  + 2KC1 HgI 2 + 2К1 (из6ыток) -> K 2

Раствор этой соли в концентрированном растворе едкой щелочи известен под называнием реактива Несслера и применяется в качестве чувствительного реагента на ион аммония и аммиак.

Лабораторная работа №5

Теоретическая часть

Комплексные (координационные) соединения – это соединения, в которых хотя бы одна из ковалентных связей образована по донорно-акцепторному механизму.

Все координационные соединения состоят из внутренней сферы (комплексной частицы), а в случае катионных и анионных координационных соединений – и из внешней сферы . Между внутренней и внешней сферой координационного соединения связь ионная.

Внутренняя сфера (комплексная частица) состоит из центрального атома (атома металла-комплексообразователя) и лигандов.

В формуле комплексных соединений внутренняя сфера заключается в квадратные скобки. Внутренняя сфера не имеет заряда в нейтральных комплексах, положительно заряжена в катионных, а отрицательно – в анионных координационных соединениях. Заряд внутренней сферы – алгебраическая сумма зарядов центрального атома и лигандов.

Центральный атом – это чаще всего ион d - элемента: Ag+, Cu2+, Hg2+, Zn2+, Ni2+, Fe3+, Pt4+ и др.

Координационное число центрального атома – число ковалентных связей между комплексообразователем и лигандами.

Как правило, координационное число в два раза превышает заряд центрального атома. В большинстве комплексных соединений координационные числа равны 6 и 4, реже 2, 3, 5 и 7.

Лиганды – анионы или молекулы, связанные с центральным атомом ковалентными связями, образованными по донорно-акцепторному механизму. Лигандами могут быть полярные молекулы (H2O, NH3, CO и др) и анионы (CN–, NO2–, Cl–, Br–, I–, OH– и др.).

Дентатность лиганда – это число ковалентных связей, которыми данный лиганд соединен с комплексообразователем.

Лиганды делятся на монодентатные (H2O, NH3, CO, CN–, NO2–, Cl–, Br–, I–, OH–), бидентатные (C2O42-, SO42- и др.) и полидентатные.

Например, в анионном комплексном соединении K3: внутренняя сфера – 3–, внешняя сфера – 3K+, центральный атом – Fe3+, координационное число центрального атома – 6, лиганды – 6CN–, их дентатность –1 (монодентатные).

Номенклатура комплексных соединений ( IUPAC )

При написании формулы комплексной частицы (иона) вначале записывается символ центрального атома, затем лиганды в алфавитном порядке их символов, но первыми анионные лиганды, а затем нейтральные молекулы. Формула заключается в квадратные скобки.

В названии координационного соединения первым указывается катион (для всех типов соединений), а затем анион. Катионные и нейтральные комплексы не имеют специального окончания. В названиях анионных комплексов к названию центрального атома (комплексообразователя) добавляется окончание –ат. Степень окисления комплексообразователя указывается римской цифрой в круглых скобках.

Названия некоторых лигандов: NH3 – аммин, H2O – аква (акво), CN– – циано, Cl– – хлоро, OH– – гидроксо. Количество одинаковых лигандов в координационном соединении обозначается префиксом: 2– ди, 3– три, 4– тетра, 5– пента, 6– гекса.

Cl диамминсеребра(I) хлорид или

хлорид диамминсеребра(I)

K2 калия тетрахлороплатинат(II) или

тетрахлороплатинат(II) калия

Диамминтетрахлороплатина(IV)

Классификация координационных соединений

Существует несколько классификаций координационных соединений: по заряду комплексной частицы, типу лигандов, числу комплексообразователей и т. д.

В зависимости от заряда комплексной частицы координационные соединения делятся на катионные, анионные и нейтральные.

В катионных комплексах внутренняя сфера образована только нейтральными молекулами (H2O, NH3, CO и др.), или молекулами и анионами одновременно.

Cl3 гексаакважалеза(III) хлорид

SO4 тетраамминмеди(II) сульфат

Cl2 тетраамминдихлороплатины(IV) хлорид

В анионных комплексах внутренняя сфера образована только анионами, или анионами и нейтральными молекулами одновременно.

K3 калия гексацианоферрат(III)

Na натрия тетрагидроксоалюминат(III)

Na натрия диакватетрагидроксоалюминат(III)

Нейтральные (электронейтральные) комплексы образуются при одновременной координации к центральному атому анионов и молекул (иногда только молекул).

Диамминдихлороплатина(II)

Тетракарбонилникель(0)

В зависимости от типа лигандов координационные соединения подразделяются на: ацидокомплексы (лигандами являются кислотные остатки CN–, NO2–, Cl–, Br–, I– и др.); аквакомплексы (лигандами являются молекулы воды); амминокомплексы (лигандами являются молекулы аммиака); гидроксокомплексы (лигандами являются OH– группы) и т. д.

Диссоциация и ионизация координационных соединений

Катионные и анионные координационные соединения в растворе полностью диссоциируют по ионной связи на внутреннюю и внешнюю сферы:

K4 → 4K+ +4–

NO3 → + + NO3–

Комплексные ионы подвергаются ионизации (диссоциируют) ступенчато как слабые электролиты:

+ ⇄ + + NH3

+ ⇄ Ag+ +NH3

Образование координационных соединений

Образование комплексных частиц (ионов) в растворах из ионов металла-комплексообразователя и лигандов происходит ступенчато:

Ag+ +NH3 ⇄ +

NH3 ⇄ +

и характеризуется ступенчатыми константами образования:

https://pandia.ru/text/80/125/images/image002_43.gif" width="113" height="45">

Ag+ + 2NH3 ⇄ +

Чем больше численное значение βn, тем прочнее (устойчивее) комплексный ион.

Получение координационных соединений

Координационные соединения чаще всего получают следующими способами.

1. Взаимодействием ионов металла-комплексообразователя (обычно раствор соли данного металла) с лигандами (раствор соли, кислоты, основания и др.):

FeCl3 + 6KCN → K3 + 3KCl

Fe3+ + 6CN– → 3–

2. Полной или частичной заменой одних лигандов в координационном соединении на другие:

K3 + 6KF → K3 + 6KSCN

3– + 6F– → 3– + 6SCN–

β6 1,70·103 1,26·1016

Новое координационное соединение образуется, если его константа образования больше константы образования исходного координационного соединения.

3.Заменой в координационном соединении металла-комплексообразователя при сохранении лигандов. Как и в предыдущем случае, данное превращение возможно, если при этом образуется более устойчивое координационное соединение.

SO4 + CuSO4 → SO4 + ZnSO4

2+ + Cu2+ → 2+ + Zn2+

β4 2,51·109 1,07·1012

Экспериментальная часть

Опыт 1. Получение и разрушение гидроксокомплексов

В две пробирки налейте по 1 мл растворов солей цинка и алюминия (сульфатов, хлоридов или нитратов). В каждую из пробирок добавьте по каплям 0,1 моль/л раствор NaOH или KOH до образования осадков соответствующих гидроксидов. Напишите уравнения реакций в ионно-молекулярном виде, укажите цвет осадков.

ZnSO4 + 2NaOH → Zn(OH)2¯ + Na2SO4

AlCl3 + 3NaOH → Al(OH)3¯ + 3NaCl

Проверьте растворимость полученных осадков в 2 моль/л растворе гидроксида натрия или калия. Отметьте Ваши наблюдения. Напишите уравнения реакций в ионно-молекулярном виде, укажите цвет образовавшихся растворов.

Zn(OH)2 + 2NaOH → Na2

Al(OH)3 + NaOH → Na или Na3

Для разрушения гидроксокомплексов в полученные растворы добавьте по каплям 2 моль/л раствор кислоты (HCl, H2SO4 или HNO3). Обратите внимание на то, что по мере добавления кислоты наблюдается помутнение растворов или образование осадков соответствующих гидроксидов, которые затем растворяются в избытке кислоты. Напишите уравнения реакций в ионно-молекулярном виде.

Na2 + 2HNO3 → 2NaNO3 + Zn(OH)2¯ + 2Н2О

Zn(OH)2 + 2HNO3 → Zn(NO3)2 + 2H2O

Na + HCl → Al(OH)3¯ + NaCl ¯ + Н2О

Al(OH)3 + 3HCl → AlCl3 + 3H2O

Опыт 2. Получение сульфата тетраамминмеди(II) и его разрушение (качественная реакция на ион Cu2+)

Налейте в пробирку 2 мл раствора сульфата меди и добавьте по каплям 2 моль/л раствор аммиака до образования осадка сульфата гидроксомеди(II) (CuOH)2SO4. Запишите цвет образовавшегося осадка. Расставьте коэффициенты и напишите уравнение реакции в ионно-молекулярном виде.

2CuSO4 + 2NH3 + 2H2O → (CuOH)2SO4 + (NH4)2SO4

Добавьте в пробирку концентрированный раствор аммиака до полного растворения осадка (CuOH)2SO4. Запишите цвет раствора сульфата тетраамминмеди (II). Расставьте коэффициенты и напишите уравнение реакции в ионно-молекулярном виде.

(CuOH)2SO4 + 6NH3 + (NH4)2SO4 → 2SO4 + 2H2O

Полученный раствор сульфата тетраамминмеди(II) разделите на две пробирки. В первую пробирку добавьте 2 моль/л раствор серной кислоты, а во вторую – раствор сульфида натрия. Отметьте изменение цвета раствора в первой пробирке и цвет образовавшегося осадка во второй пробирке. Расставьте коэффициенты и напишите уравнения реакций в ионно-молекулярном виде. Под формулами укажите цвет окрашенных исходных веществ и продуктов реакций.

SO4 + 2H2SO4 + 4H2O → SO4 + 2(NH4)2SO4

SO4 + Na2S → CuS + Na2SO4 + 4NH3

Опыт 3 Диссоциация комплексных соединений

В пробирку налейте 3-5 капель раствора хлорида калия и добавьте небольшое количество (на кончике шпателя) кристаллического гексанитрокобальтата(III) натрия Na3. Обратите внимание на образование желтого осадка K2Na. Данная реакция является качественной на ионы калия.

KCl → K+ + Cl–

2 K+ + Na+ + 3– → K2Na¯

В другую пробирку налейте 3-5 капель раствора хлорида железа (III), а затем добавьте 2-3 капли раствора тиоцианата аммония или калия. Обратите внимание на изменение окраски раствора. Данная реакция является качественной на ион Fe3+.

FeCl3 → Fe3+ + 3Cl–

Fe3+ + 6SCN– ⇄ 3–

Проведите соответствующие качественные реакции на ионы К+ и Fe3+ в растворе гексацианоферрата(III) калия K3. Отметьте Ваши наблюдения.

Какое из двух, приведенных ниже, уравнений диссоциации K3 в водном растворе:

K3 → 3K+ + 3–

K3 → 3K+ + Fe3+ + 6CN–

согласуется с Вашими наблюдениями?

Сформулируйте вывод о характере диссоциации комплексных (координационных) соединений в водных растворах.