Фосфор как добывают. Как сделать фосфор в домашних условиях. Что такое ортофосфорная кислота

Введение

Проблема старения организма и продления жизни человека является одной из важнейших тем, интересовавших практически любую человеческую цивилизацию. Изучение механизмов старения человеческого организма остается крайне актуальной проблемой и в настоящее время. Укажем лишь на один демографический показатель: к началу XXI века в развитых странах доля населения, достигшего возраста 65 лет и более составляет 10-14%. По имеющимся прогнозам через 20 лет этот показатель удвоится. Старение населения ставит перед современной медициной множество пока еще не решенных задач, в том числе - и задачу по продлению жизни в состоянии активной старости на значительный промежуток времени. Решать эту грандиозную задачу, не имея представления о механизмах старения организма, не возможно. Мы остановимся лишь на обсуждении механизмов старения клеток, причем тех из них, которые детерминированы генетически, то есть, присущи организму человека от его рождения и до смерти.

Лимит Хейфлика

В 1961 году американский цитолог Леонард Хейфлик провел совместно с другим ученым П. Мурхедом эксперименты по культивации фибробластов человеческих эмбрионов. Эти исследователи помещали в питательную среду отдельные клетки (перед инкубацией ткань обрабатывалась трипсинов, благодаря чему ткань диссоциировалась на отдельные клетки). Кроме того, Л. Хейфлик и П. Мурхед применяли в качестве питательной среды раствор аминокислот, солей и некоторых других низкомолекулярных компонентов.

В культуре ткани начиналось деление фибробластов, и когда клеточный слой достигал определенного размера, его делили пополам, вновь обрабатывали трипсином и переносили в новый сосуд. Подобные пассажи продолжались до тех пор, пока деление клеток не прекращалось. Регулярно это явление наступало после 50 делений. Переставшие делиться клетки через некоторое время погибали. Опыты Л. Хейфлика и П. Мурхеда были многократно повторены в самых различных лабораториях во многих странах мира. Во всех случаях результат был один и тот же: делящиеся клетки (причем не только фибробласты, но и другие соматические клетки) прекращали свое деление после 50-60 пересевов. Критическое число делений соматических клеток получило название «лимита Хейфлика». Интересно, что для соматических клеток различных видов позвоночных животных лимит Хейфлика оказался различным и коррелировался с продолжительностью жизни этих организмов.

воды , а не с др. фосфат-анионами. В р-рах фосфорной кислоты имеет место обмен атомами кислорода между группами PO 4 и водой .

H 3 PO 4 - сильная к-та, K 1 7,1·10 -3 (рК а 2,12), K 2 6,2·10 -8 (рК а 7,20), K 3 5,0·10 -13 (рК а 12,32); значения K 1 и K 2 зависят от т-ры. Диссоциация по первой ступени экзотермична, по второй и третьей - эндотермична. Фазовая диаграмма системы H 3 PO 4 - H 2 O приведена на рис. 2. Максимум кривой кристаллизации - при т-ре 302,4 К и содержании H 3 PO 4 91,6% (твердая фаза - гемигидрат). В табл. приведены св-ва р-ров фосфорной кислоты .

ХАРАКТЕРИСТИКА ВОДНЫХ РАСТВОРОВ H 3 PO 4

T. затв., 0 C

T. кип., 0 C

кДж/(кг·К)

Па ·с (25 0 C)

Уд. электрич. проводимость, См/м (25 0 C)

H 3 PO 4

P 2 O 5

5

3,62

0,8

100,10

4,0737

0,0010

10,0

3129,1

10

7,24

2,10

100,20

3,9314

0,0011

18,5

3087,7

20

14,49

6,00

100,80

3,6467

0,0016

18,3

2986,4

30

21,73

11,80

101,80

3,3411

0,0023

14,3

2835,7

40

28,96

21,90

103,90

3,0271

0,0035

11,0

2553,1

50

36,22

41,90

104,00

2,7465

0,0051

8,0

2223,8

60

43,47

76,9

114,90

2,4995

0,0092

7,2

1737,1

70

50,72

43,00

127,10

2,3278

0,0154

6,3

1122,6

75

54,32

17,55

135,00

2,2692

0,0200

5,8

805,2

Ф осфорная кислота при нормальных условиях малоактивна и реагирует лишь с карбонатами , гидроксидами и нек-рыми металлами . При этом образуются одно-, двух- и трехзамещенные фосфаты (см. Фосфаты неорганические). При нагр. выше 80 0 C реагирует даже с неактивными оксидами , кремнеземом и силикатами . При повышенных т-рах фосфорная кислота- слабый окислитель для металлов . При действии на металлич. пов-сть р-ром фосфорной кислоты с добавками Zn или Mn образуется защитная пленка (фосфатирование). Фосфорная кислота при нагр. теряет воду с образованием последовательно пиро- и метафосфорных к-т:

Фосфолеум (жидкий фосфорный ангидрид , суперфосфорная к-та) включает к-ты, содержащие от 72,4 до 88,6% P 2 O 5 , и представляет собой равновесную систему, состоящую из орто-, пиро-, Триполи-, тетраполи- и др. фосфорных к-т (см. Фосфаты конденсированные). При разбавлении суперфосфорной к-ты водой выделяется значит. кол-во тепла, и полифосфорные к-ты быстро переходят в ортофосфорную.



От др. фосфорных к-т H 3 PO 4 можно отличить по р-ции с AgNO 3 - выпадает желтый осадок Ag 3 PO 4 . Остальные фосфорные к-ты образуют белые осадки.

Получение. Фосфорную кислоту в лаб. условиях легко получить окислением фосфора 32%-ным р-ром азотной к-ты:

В пром-сти фосфорную кислоту получают термическим и экстракционным способами.

Термич. способ (позволяет производить наиб. чистую фосфорную кислоту) включает осн. стадии: сжигание (окисление) элементного фосфора в избытке воздуха , гидратацию и абсорбцию полученного P 4 O 10 (см. Фосфора оксиды), конденсацию фосфорной кислоты и улавливание тумана из газовой фазы. Существуют два способа получения P 4 O 10: окисление паров P (в пром-сти используют редко) и окисление жидкого P в виде капель или пленки. Степень окисления P в пром. условиях определяется т-рой в зоне окисления , диффузией компонентов и др. факторами. Вторую стадию получения термич. фосфорной кислоты- гидратацию P 4 O 10 - осуществляют абсорбцией к-той (водой) либо взаи-мод. паров P 4 O 10 с парами воды . Гидратация (P 4 O 10 + 6H 2 O 4H 3 PO 4) протекает через стадии образования полифосфорных к-т. Состав и концентрация образующихся продуктов зависят от т-ры и парциального давления паров воды .

Все стадии процесса м. б. совмещены в одном аппарате, кроме улавливания тумана, к-рое всегда производят в отдельном аппарате. В пром-сти обычно используют схемы из двух или трех осн. аппаратов. В зависимости от принципа охлаждения газов существуют три способа произ-ва термич. фосфорной кислоты : испарительный, циркуляционно-испарительный, теплообмен-но-испарительный. Испарит. системы, основанные на отводе теплоты при испарении воды или разб. фосфорной кислоты , наиб. просты в аппаратурном оформлении. Однако из-за относительно большого объема отходящих газов использование таких систем целесообразно лишь в установках небольшой единичной мощности.

Циркуляционно-испарит. системы позволяют совместить в одном аппарате стадии сжигания P, охлаждения газовой фазы циркулирующей к-той и гидратации P 4 O 10 . Недостаток схемы - необходимость охлаждения больших объемов к-ты. Теплообменно-испарит. системы совмещают два способа отвода теплоты: через стенку башен сжигания и охлаждения, а также путем испарения воды из газовой фазы; существенное преимущество системы - отсутствие контуров циркуляции к-ты с насосно-холодильным оборудованием.

На отечеств. предприятиях эксплуатируют технол. схемы с циркуляционно-испарит. способом охлаждения (двухбашен-ная система). Отличит. особенности схемы: наличие допол нит. башни для охлаждения газа , использование в циркуляционных контурах эффективных пластинчатых теплообменников ; применение высокопроизводит. форсунки для сжигания P, обеспечивающей однородное тонкодисперсное распыление струи жидкого P и полное его сгорание без образования низших оксидов .

Технол. схема установки мощностью 60 тыс. т в год 100%-ной H 3 PO 4 приведена на рис. 3. Расплавленный желтый фосфор распыляется нагретым воздухом под давлением до 700 кПа через форсунку в башне сжигания, орошаемой циркулирующей к-той. Нагретая в башне к-та охлаждается оборотной водой в пластинчатых теплообменниках . Продукционная к-та, содержащая 73-75% H 3 PO 4 , отводится из контура циркуляции на склад. Дополнит, охлаждение газов из башни сжигания и абсорбцию к-ты производят в башне охлаждения (гидратации), что снижает послед, температурную нагрузку на электрофильтр и способствует эффективной очистке газов . Отвод теплоты в башне гидратации осуществляется циркулирующей 50%-ной H 3 PO 4 , охлаждаемой в пластинчатых теплообменниках . Газы из башни гидратации после очистки от тумана H 3 PO 4 в пластинчатом электрофильтре выбрасываются в атмосферу . На 1 т 100%-ной H 3 PO 4 расходуется 320 кг P.


Рис. 3. Циркуляционная двухбашенная схема произ-ва термич. H 3 PO 4: 1 - сборник кислой воды ; 2 - хранилище фосфора ; 3,9 - циркуляционные сборники; 4,10 - по-гружные насосы ; 5,11 - пластинчатые теплообменники ; 6 - башня сжигания; 7 - фосфорная форсунка; 8 -башня гидратации ; 12 - электрофильтр; 13 - вентилятор.

Более экономичный экстракционный метод получения фосфорной кислоты основан на разложении прир. фосфатов к-тами (в осн. серной, в меньшей степени азотной и незначительно соляной). Фосфорнокислые р-ры, полученные разложением азотной к-той, перерабатывают в комплексные удобрения , разложением соляной к-той - в преципитат .

Сернокислотное разложение фосфатного сырья [в странах СНГ гл. обр. хибинского апатитового концентрата (см. Апатитфосфоритов Каратау] - осн. метод получения экстракционной фосфорной кислоты , применяемой для произ-ва конц. фосфорных и комплексных удобрений . Суть метода - извлечение (экстрагирование) P 4 O 10 (обычно используют ф-лу P 2 O 5) в виде H 3 PO 4 . По этому методу прир. фосфаты обрабатывают H 2 SO 4 с послед, фильтрованием полученной пульпы для отделения фосфорной кислоты от осадка сульфата Ca. Часть выделенного осн. фильтрата, а также весь фильтрат, полученный при промывке осадка на фильтре , возвращают в процесс экстрагирования (р-р разбавления) для обеспечения достаточной подвижности пульпы при ее перемешивании и транспортировке. Массовое соотношение между жидкой и твердой фазами от 1,7:1 до 3,0:1.

Прир. фосфаты разлагаются по схеме:

Разложению к-тами подвергаются также сопутствующие примеси: кальцит , доломит , сидерит, нефелин , глауконит, каолин и др. минералы . Это приводит к увеличению расхода используемой к-ты, а также снижает извлечение P 2 O 5 в целевой продукт вследствие образования нерастворимых фосфатов железа FeH 3 (PO 4) 2 · 2,5H 2 O при концентрациях P 2 O 5 выше 40% (содержание P 4 O 10 обычно дается в пересчете на P 2 O 5) и FePO 4 · 2H 2 O - при более низких концентрациях . Выделяю щийся при разложении карбонатов СО 2 образует в экстракторах стойкую пену ; р-римые фосфаты Mg, Fe и Al снижают активность фосфорной кислоты , а также уменьшают содержание усвояемых форм P 2 O 5 в удобрениях при послед. переработке фосфорной кислоты .

С учетом влияния примесей определены требования к фосфатному сырью, согласно к-рым прир. фосфаты с повышенным содержанием соед. Fe, Al, Mg, карбонатов и орг. в-в непригодны для произ-ва фосфорной кислоты .

В зависимости от т-ры и концентрации фосфорной кислоты в системе CaSO 4 -H 3 PO 4 -H 2 O сульфат Ca осаждается в виде дигидрата (гипса), гемигидрата или ангидрита. В реальных условиях осадок загрязнен примесями P 2 O 5 в виде неразложенных прир. фосфатов , недоотмытой H 3 PO 4 , сокристаллизованных фосфатов разл. металлов и др., поэтому образующиеся сульфаты Ca наз. соотв. фосфогипс, фосфогемигидрат и фосфо-ангидрит. В зависимости от типа осаждаемого сульфата различают три прямых способа произ-ва экстракционной фосфорной кислоты : дигидратный, полугидратный (гемигидратный) и ангидрит-ный, а также комбинированные: полугидратно-дигидратный и дигидратно-полугидратный.

В СНГ наиб. отработан в пром-сти дигидратный способ, к-рый отличается высоким выходом P 2 O 5 (93-96,5%) в продукционную к-ту; однако относительно низ кая концентрация фосфорной кислоты требует ее послед. упаривания. Осн. стадии процесса: экстракция с внеш. или внутр. циркуляцией и вакуумным или воздушным охлаждением экстракционной пульпы, дозревание пульпы после экстрактора , отделение фосфорной кислоты на наливных вакуум-фильтрах . Эффективность процесса определяют в осн.

Фосфорная кислота H 3 PO 4 является важнейшим промежуточным продуктом в производстве концентрированных фосфорсодержащих удобрений. Кроме того, фосфорная кислота используется в производстве различных технических солей, разнообразных фосфорорганических продуктов, в том числе инсектицидов, полупроводников, активированного угля, ионообменных смол, для создания защитных покрытий на металлах. Очищенная (пищевая) H 3 PO 4 используется в пищевой промышленности, для приготовления кормовых концентратов, фармацевтических препаратов. Фосфорную кислоту получают из сложного, многокомпонентного сырья, при переработке которого образуются многочисленные и разнообразные отходы.

Фосфорная кислота образуется непосредственно при растворении руды, т.е. прямым извлечением, экстракцией соединений фосфора. Отсюда название продукта - экстракционная фосфорная кислота. Из более бедных руд получают термическую фосфорную кислоту. Процесс основан на восстановлении фосфора из природных фосфатов коксом при высоких температурах и дальнейшем получении H 3 PO 4 и з фосфора.

Кислородные кислоты фосфора, представляющие собой продукты гидратации фосфорного ангидрида. Различают ортофосфорную кислоту (обычно называемую фосфорной кислотой) и конденсированные Ф. к. Наиболее изучена и важна ортофосфорная кислота H 3 PO 4 , образующаяся при растворении P 4 O 10 (или P 2 O 5) в воде.

Образует три ряда солей -- фосфатов. При нагревании растворов кислоты происходит её дегидратация с образованием конденсированных фосфорных кислот.

В промышленности ортофосфорную кислоту получают экстракционным (сернокислотным) или термическим способами.

Термический способ основан на сжигании фосфора до фосфорного ангидрида P 4 + 5O 2 P 4 O 10 и гидратации последнего.

Промышленная ортофосфорная кислота -- важнейший полупродукт для производства фосфорных и комплексных удобрений и технических фосфатов, широко используется также для фосфатирование металлов, в качестве катализатора в органическом синтезе. Пищевая фосфорная кислота применяется для приготовления безалкогольных напитков, лекарств, зубных цементов и др.

Технологический процесс производства фосфорной кислоты электротермическим методом может строиться по двум вариантам:

  • --по одноступенчатой схеме, без предварительной конденсации паров фосфора, с непосредственным сжиганием выходящего из стадии восстановления фосфорсодержащего газа (рис.1);
  • --по двухступенчатой схеме, с предварительной конденсацией паров фосфора и последующей переработкой его в фосфорную кислоту (рис. 2.):

Рис. 1

Рис. 2

При окислении фосфора и гидратации оксида фосфора (V) выделяется большое количество тепла, которое для поддержания оптимального теплового режима процесса должно отводиться из системы.

Наиболее распространены циркуляционно-испарительные схемы, в которых охлаждение газов происходит за счет теплообмена с циркулирующей фосфорной кислотой и в результате испарения из нее воды. Подобная технологическая схема установки производительностью 60 тыс. тонн в год 100% -ной кислоты или 2,5 т/час по сжигаемому фосфору, приведена на рис. 3.

Рис. 3 Технологическая схема производства термической фосфорной кислоты двухстадийным методом: 1 - электропечь, 2 - бункер шихты, 3 - газоотсекатель, 4, 14 - электрофильтры, 5 -горячий конденсатор, 6 - холодный конденсатор, 7, 8 - сборник жидкого фосфора, 9 -отстойник жидкого фосфора, 10 - башня сгорания, 11, 13 - холодильники, 12 - башня гидратации, 15 - сборник фосфорной кислоты

В трехфазную электропечь РКЗ-72 Ф (рудотермическая, круглая, закрытая, мощностью 72 MB. А, фосфорная) с самоспекающимися анодами 1 поступает из бункера 2 шихта, состоящая из фосфата, оксида кремния (кварцита) и кокса. Выходящий из печи газ, содержащий 6--10% фосфора, проходит через газоотсекатель 3 в электрофильтр 4, где из него извлекается пыль. Очищенный газ направляется в конденсаторы - промыватели - горячий 5 и холодный 6, охлаждаемые разбрызгиваемой в них водой, которая циркулирует по замкнутому контуру. Сконденсировавшийся жидкий фосфор собирается в сборниках 7 и 8, откуда поступает в отстойник 9.

Степень конденсации фосфора из газа достигает 0,995. Выходящий из конденсаторов газ, содержащий до 85% об. оксида углерода используется в качестве топлива или сжигается. Шлаки, скапливающиеся в нижней части печи 1, непрерывно скачиваются и используются в производстве цемента и других строительных материалов. Из отстойника 9 расплавленный фосфор подается в башню сгорания 10, где распыляется форсунками в токе воздуха. В башню для охлаждения подается циркуляционная фосфорная кислота, охлаждаемая предварительно в холодильнике 11, часть ее в виде 75%-ной фосфорной кислоты, отводится в качестве продукционной и поступает на склад. Для пополнения в систему вводится необходимое количество воды. Из башни сгорания газ при температуре 100°С поступает в башню гидратации-охлаждения 12, орошаемую фосфорной кислотой, где заканчивается процесс гидратации. За счет орошения температура фосфорной кислоты на выходе снижается до 40 - 45°С. Циркулирующая в башне гидратации кислота охлаждается в холодильнике 13. Из башни гидратации 12 газ направляется в электрофильтр 14. Сконденсировавшаяся в нем из тумана фосфорная кислота поступает в сборник 15, а отходящие газы выбрасываются в атмосферу.

Основными аппаратами в производстве термической фосфорной кислоты являются башня сгорания (сжигания) и башня гидратации.

Башня сгорания полая, имеет коническую форму, диаметр около 4 м и высота около 14 м. Крышка башни охлаждается водой и имеет форсунку для распыления фосфора. Башня гидратации выполнена в виде цилиндра высотой 15 м и диаметром 3 м и содержит насадку из колец Рашига и три яруса форсунок для распыления кислоты.

Технологический схема установки мощностью 60 тысяч т в год 100%-ной H3PO4 приведена на рис. 4. Расплавленный желтый фосфор распыляется нагретым воздухом под давлением до 700 кПа через форсунку в башне сжигания, орошаемой циркулирующей кислотой. Нагретая в башне кислота охлаждается оборотной водой в пластинчатых теплообменниках. Продукционная кислота, содержащая 73-75% H3PO4, отводится из контура циркуляции на склад. Дополнит, охлаждение газов из башни сжигания и абсорбцию кислоты производят в башне охлаждения (гидратации), что снижает послед, температурную нагрузку на электрофильтр и способствует эффективной очистке газов. Отвод теплоты в башне гидратации осуществляется циркулирующей 50%-ной H3PO4, охлаждаемой в пластинчатых теплообменниках. Газы из башни гидратации после очистки от тумана H3PO4 в пластинчатом электрофильтре выбрасываются в атмосферу. На 1 т 100%-ной H3PO4 расходуется 320 кг P.


Рис. 4 Циркуляционная двухбашенная схема производства термодинамически H3PO4, где 1 - сборник кислой воды; 2 - хранилище фосфора; 3,9 - циркуляционные сборники; 4,10 - погружные насосы; 5,11 - пластинчатые теплообменники; 6 - башня сжигания; 7 - фосфорная форсунка; 8 -башня гидратации; 12 - электрофильтр; 13 - вентилятор

Разложению кислотами подвергаются также сопутствующие примеси: кальцит, доломит, сидерит, нефелин, глауконит, каолин и др. минералы. Это приводит к увеличению расхода используемой кислоты, а также снижает извлечение P2O5 в целевой продукт вследствие образования нерастворимых фосфатов железа FeH3(PO4)2* 2,5H2O при концентрациях P2O5 выше 40% (содержание P4O10 обычно дается в пересчете на P2O5) и FePO4* 2H2O - при более низких концентрациях. Выделяющийся при разложении карбонатов СО2 образует в экстракторах стойкую пену; растворимые фосфаты Mg, Fe и Al снижают активность фосфорной кислоты, а также уменьшают содержание усвояемых форм P2O5 в удобрениях при последующей переработке фосфорная кислота.

С учетом влияния примесей определены требования к фосфатному сырью, согласно которым природные фосфаты с повышенным содержанием соединение Fe, Al, Mg, карбонатов и органическое веществ непригодны для производства фосфорной кислоты