Сражение при фермопилах кратко. Что случилось при фермопилах. Выбор места проведения решающей битвы

Симметрия в природе является объективным свойством, одним из основных в современном естествознании. Это универсальная и общая характеристика нашего материального мира.

Симметрия в природе - это понятие, которое отражает существующий в мире порядок, соразмерность и пропорциональность между элементами различных систем или объектов природы, равновесие системы, упорядоченность, устойчивость, то есть определенный

Симметрия и асимметрия - понятия противоположные. Последнее отражает разупорядочение системы, отсутствие равновесия.

Формы симметрий

Современное естествознание определяет ряд симметрий, отражающих свойства иерархии отдельных уровней организации материального мира. Известны различные виды или формы симметрий:

  • пространственно-временные;
  • калибровочные;
  • изотопические;
  • зеркальные;
  • перестановочные.

Все перечисленные виды симметрий можно подразделить на внешние и внутренние.

Внешняя симметрия в природе (пространственная или геометрическая) представлена огромным многообразием. Это относится к кристаллам, живым организмам, молекулам.

Внутренняя симметрия скрыта от наших глаз. Она проявляется в законах и математических уравнениях. Например, уравнение Максвелла, определяющее взаимосвязь магнитных и электрических явлений, или свойство гравитации Эйнштейна, связывающее пространство, время и тяготение.

Для чего нужна симметрия в жизни?

Симметрия в живых организмах была сформирована в процессе эволюции. Самые первые организмы, зародившиеся в океане, имели идеальную сферическую форму. Для того чтобы внедриться в иную среду, им приходилось адаптироваться к новым условиям.

Одним из способов подобной адаптации является симметрия в природе на уровне физических форм. Симметричным расположением частей тела обеспечивается равновесие при движении, жизнестойкость и адаптация. Внешние формы человека и крупных животных имеют довольно симметричный вид. В растительном мире тоже присутствует симметрия. Например, конусообразная форма кроны ели имеет симметричную ось. Это вертикальный ствол, для устойчивости утолщенный книзу. Также симметрично по отношению к нему расположены отдельные ветви, а форма конуса позволяет рационально использовать кроной солнечной энергии. Внешняя симметрия животных помогает им сохранять равновесие при движении, обогащаться энергией из окружающей среды, используя ее рационально.

В химических и физических системах симметрия присутствует тоже. Так, наиболее устойчивыми являются молекулы, которые обладают высокой симметрией. Кристаллы - это высокосимметричные тела, в их структуре периодически повторяются три измерения элементарного атома.

Асимметрия

Иногда внутреннее расположение органов в живом организме бывает асимметричным. Например, сердце располагается у человека слева, печень - справа.

Растения в процессе жизнедеятельности из почвы поглощают химические минеральные соединения из молекул симметричной формы и в своем организме преобразуют их в асимметричные вещества: белки, крахмал, глюкозу.

Асимметрия и симметрия в природе - это две противоположные характеристики. Это категории, которые всегда находятся в борьбе и единстве. Разные уровни развития материи могут носить свойства то симметрии, то асимметрии.

Если предположить, что равновесие является состоянием покоя и симметрии, а движение и неравновесное вызвано асимметрией, то можно сказать, что понятие равновесия в биологии не менее важно, чем в физике. Биологическая характеризуется принципом устойчивости термодинамического равновесия Именно асимметрию, которая является устойчивым динамическим равновесием, можно считать ключевым принципом при решении проблемы зарождения жизни.

Взгляните на лица окружающих вас людей: один глаз чуточку больше прищурен, другой меньше, одна бровь изогнута более, другая -- менее; одно ухо выше, другое ниже. К сказанному добавим, что человек больше пользуется правым глазом, чем левым. Понаблюдайте-ка, например, за людьми, которые стреляют из ружья или лука.

Из приведенных примеров видно, что в строении тела человека, его привычках ясно выражено стремление резко выделить какое-либо направление -- правое или левое. Это не случайность. Подобные явления можно отметить также и у растений, животных и микроорганизмов.

Ученые давно обратили на это внимание. Еще в XVIII в. ученый и писатель Бернарден де Сен Пьер указывал, что все моря наполнены одностворчатыми брюхоногими моллюсками бесчисленного множества видов, у которых все завитки направлены слева направо, подобно движению Земли, если поставить их отверстиями к северу и острыми концами к Земле.

Но прежде чем приступить к рассмотрению явлений подобной асимметрии, мы выясним сначала, что такое симметрия.

Для того чтобы разобраться хотя бы в главных результатах, достигнутых при изучении симметрии организмов, нужно начать с основных понятий самой теории симметрии. Вспомните, какие тела в быту обычно считают равными. Только такие, которые совершенно одинаковы или, точнее, которые при взаимном наложении совмещаются друг с другом во всех своих деталях, как, например, два верхних лепестка на рисунке 1. Однако в теории симметрии, помимо совместимого равенства, выделяют еще два вида равенства -- зеркальное и совместимо-зеркальное. При зеркальном равенстве левый лепесток из среднего ряда рисунка 1 можно точно совместить с правым лепестком лишь после предварительного отражения в зеркале. А при совместимо-зеркальном равенстве двух тел их можно совместить друг с другом как до, так и после отражения в зеркале. Лепестки нижнего ряда на рисунке 1 равны друг другу и совместимо, и зеркально.

Из рисунка 2 видно, что наличия одних равных частей в фигуре еще недостаточно, чтобы признать фигуру симметричной: слева они расположены незакономерно и мы имеем несимметричную фигуру, справа -- однообразно и мы имеем симметричный венчик. Такое закономерное, однообразное расположение равных частей фигуры относительно друг друга и называют симметрией.

Равенство и одинаковость расположения частей фигуры выявляют посредством операций симметрии. Операциями симметрии называют повороты, переносы, отражения.

Для нас наиболее важны здесь повороты и отражения. Под поворотами понимают обычные повороты вокруг оси на 360°, в результате которых равные части симметричной фигуры обмениваются местами, а фигура в целом совмещается с собой. При этом ось, вокруг которой происходит поворот, называется простой осью симметрии. (Это название не случайно, так как в теории симметрии различают еще и различного рода сложные оси.) Число совмещений фигуры с самой собой при одном полном обороте вокруг оси называется порядком оси. Так, изображение морской звезды на рисунке 3 обладает одной простой осью пятого порядка, проходящей через его центр.

Это означает, что, поворачивая изображение звезды вокруг ее оси на 360°, мы сумеем наложить равные части ее фигуры друг на друга пять раз.

Под отражениями понимают любые зеркальные отражения -- в точке, линии, плоскости. Воображаемая плоскость, которая делит фигуры на две зеркально равные половины, называется плоскостью симметрии. Рассмотрим на рисунке 3 цветок с пятью лепестками. Он обладает пятью плоскостями симметрии, пересекающимися на оси пятого порядка. Симметрию этого цветка можно обозначить так: 5*m. Цифра 5 здесь означает одну ось симметрии пятого порядка, а m -- плоскость, точка -- знак пересечения пяти плоскостей на этой оси. Общая формула симметрии подобных фигур записывается в виде n*m, где n -- символ оси. Причем он может иметь значения от 1 до бесконечности (?).

При изучении симметрии организмов было установлено, что в живой природе наиболее часто встречается симметрия вида n*m. Симметрию этого вида биологи называют радиальной (лучевой). Помимо показанных на рисунке 3 цветка и морской звезды, радиальная симметрия присуща медузам и полипам, поперечным разрезам плодов яблок, лимонов, апельсинов, хурмы (рис. 3) и т. д.

С возникновением на нашей планете живой природы возникли и развились новые виды симметрии, которых до этого либо совсем не было, либо было немного. Это особенно хорошо видно на примере частного случая симметрии вида n*m, который характеризуется лишь одной плоскостью симметрии, делящей фигуру на две зеркально равные половины. В биологии этот случай называется билатеральной (двусторонней) симметрией. В неживой природе этот вид симметрии не имеет преобладающего значения, но зато чрезвычайно богато представлен в живой природе (рис. 4).

Он характерен для внешнего строения тела человека, млекопитающих, птиц, пресмыкающихся, земноводных, рыб, многих моллюсков, ракообразных, насекомых, червей, а также многих растений, например цветков львиного зева.

Полагают, что такая симметрия связана с различиями движения организмов вверх-- вниз, вперед -- назад, тогда как их движения направо -- налево совершенно одинаковы. Нарушение билатеральной симметрии неизбежно приводит к торможению движения одной из сторон и изменению поступательного движения в круговое. Поэтому не случайно активно подвижные животные двусторонне симметричны.

Билатеральность же неподвижных организмов и их органов возникает вследствие неодинаковости условий прикрепленной и свободной сторон. По-видимому, так обстоит дело у некоторых листьев, цветков и лучей коралловых полипов.

Здесь уместно отметить, что среди организмов до сих пор не встречалась симметрия, которая исчерпывается наличием только центра симметрии. В природе этот случай симметрии распространен, пожалуй, только среди кристаллов; сюда относятся, между прочем, и синие, великолепно вырастающие из раствора кристаллы медного купороса.

Другой основной вид симметрии характеризуется лишь одной осью симметрии n-го порядка и называется аксиальным или осевым (от греческого слова «аксон» -- ось). До самого последнего времени организмы, форме которых присуща аксиальная симметрия (за исключением простейшего, частного случая, когда n=1), биологам известны не были. Однако недавно обнаружено, что эта симметрия широко распространена в растительном мире. Она присуща венчикам всех тех растений (жасмина, мальвы, флоксов, фуксии, хлопчатника, желтой горечавки, золототысячника, олеандра и др.), края лепестков которых лежат друг на друге веерообразно по ходу часовой стрелки или против нее (рис. 5).

Эта симметрия присуща и некоторым животным, например медузе аурелиа инсулинда (рис. 6). Все эти факты привели к установлению существования нового класса симметрии в живой природе.

Объекты аксиальной симметрии -- это особые случаи тел диссимметрической, т. е. расстроенной, симметрии. От всех остальных объектов они отличаются, в частности, своеобразным отношением к зеркальному отражению. Если яйцо птицы и тело речного рака после зеркального отражения совсем не изменяют своей формы, то (рис. 7)

аксиальный цветок анютиных глазок (а), асимметрическая винтовая раковина моллюска (б) и для сравнения часы (в), кристалл кварца (г), асимметричная молекула (д) после зеркального отражения изменяют свою фигуру, приобретая ряд противоположных признаков. Стрелки действительных часов и зеркальных движутся в противоположных направлениях; строки на странице журнала написаны слева направо, а зеркальные -- справа налево, все буквы как будто вывернуты наизнанку; стебель вьющегося растения и винтовая раковина брюхоногого моллюска перед зеркалом идут слева вверх направо, а зеркальных -- справа вверх налево и т. д.

Что касается простейшего, частного случая осевой симметрии(n=1),о котором упоминается выше, то биологам он известен давно и называется асимметрическим. Для примера достаточно сослаться на картину внутреннего строения подавляющего большинства видов животных, включая и человека.

Уже из приведенных примеров нетрудно заметить, что диссимметрические объекты могут существовать в двух разновидностях: в виде оригинала и зеркального отражения (руки человека, раковины моллюсков, венчики анютиных глазок, кристаллы кварца). При этом одна из форм (не важно, какая) называется правой П, а другая левой -- Л. Здесь очень важно уяснить себе, что правыми и левыми могут называться и называются не только известные в этом отношении руки или ноги человека, но и любые диссимметрические тела -- продукты производства людей (винты с правой и левой резьбой), организмы, неживые тела.

Обнаружение и в живой природе П-Л-форм поставило перед биологией сразу ряд новых и очень глубоких вопросов, многие из которых сейчас решаются сложными математическими и физико-химическими методами.

Первый вопрос -- это вопрос о закономерностях формы и строения П- и Л-биологических объектов.

Совсем недавно ученые установили глубокое структурное единство диссимметрических объектов живой и неживой природы. Дело в том, что правизна-левизна свойство, одинаково присущее живым и неживым телам. Общими для них оказались и связанные с правизной-левизной различные явления. Укажем лишь на одно такое явление -- диссимметрическую изомерию. Она показывает, что в мире существует множество объектов различного строения, но при одном и том же наборе составляющих эти объекты частей.

На рисунке 8 показаны предсказанные, а затем и обнаруженные 32 формы венчиков лютика. Здесь в каждом случае число частей (лепестков) одно и то же -- по пяти; различно лишь их взаимное расположение. Стало быть, здесь перед нами пример диссимметрической изомерии венчиков.

В качестве другого примера могут служить объекты совершенно иной природы молекулы глюкозы. Их мы можем рассматривать наряду с венчиками лютика как раз из-за одинаковости законов их строения. Состав глюкозы следующий: 6 атомов углерода, 12 атомов водорода, 6 атомов кислорода. Этот набор атомов может быть распределен в пространстве весьма различно. Ученые считают, что молекулы глюкозы могут существовать по крайней мере в 320 различных видах.

Второй вопрос: насколько часто встречаются в природе П- и Л-формы живых организмов?

Самое важное в этом отношении открытие было сделано при изучении молекулярного строения организмов. Оказалось, что протоплазма всех растений, животных и микроорганизмов усваивает в основном только П-сахара. Таким образом, каждый день мы питаемся правым сахаром. Зато аминокислоты встречаются главным образом в Л-форме, а построенные из них белки -- в основном в П-форме.

Возьмем для примера два белковых продукта: яичный белок и овечью шерсть. Оба они -- «правши». Шерсть и яичный белок «левши» в природе до сих пор не найдены. Если бы удалось каким-либо образом создать Л-шерсть, т. е. такую шерсть, аминокислоты в которой были бы расположены по стенкам вьющегося влево винта, то проблема борьбы с молью была бы решена: моль может питаться только П-шерстью, точно так же, как люди усваивают только П-белок мяса, молока, яиц. И это нетрудно понять. Моль переваривает шерсть, а человек -- мясо посредством особых белков -- ферментов, по своей конфигурации тоже правых. И подобно тому как Л-винт нельзя ввернуть в гайки с П-резьбой, посредством П-ферментов невозможно переварить Л-шерсть и Л-мясо, если таковые были бы найдены.

Возможно, в этом же кроется загадка и болезни, известной под названием рака: есть сведения, что в ряде случаев раковые клетки строят себя не из правых, а из левых, не перевариваемых нашими ферментами белков.

Широко известный антибиотик пенициллин вырабатывается плесневым грибком только в П-форме; искусственно приготовленная Л-форма его антибиотически не активна. В аптеках продается антибиотик левомицетин, а не его антипод -- правомицетин, так как последний по своим лечебным свойствам значительно уступает первому.

В табаке содержится Л-никотин. Он в несколько раз более ядовит, чем П-никотин.

Если рассматривать внешнее строение организмов, то и здесь мы увидим то же самое. В подавляющем большинстве случаев целые организмы и их органы встречаются в П- или Л-форме. Задняя часть тела волков и собак при беге несколько заносится вбок, поэтому их разделяют на право- и левобегающих. Птицы-левши складывают крылья так, что левое крыло накладывается на правое, а правши -- наоборот. Некоторые голуби при полете предпочитают кружиться вправо, а другие влево. За это голубей издавна в народе делят на «правухов» и «левухов». Раковина моллюска фрутицикола лантци встречается главным образом в П-закрученной форме. Замечательно, что при питании морковью преобладающие П-формы этого моллюска прекрасно растут, а их антиподы -- Л-моллюски -- резко теряют в весе. Инфузория туфелька из-за спирального расположения на ее теле ресничек передвигается в капельке воды, как и многие другие простейшие, по лево завивающемуся штопору. Инфузории, вбуравливающиеся в среду по правому штопору, встречаются редко. Нарцисс, ячмень, рогоз и др.-- правши: их листья встречаются только в П-винтовой форме (рис. 9). Зато фасоль -- левша: листья первого яруса чаще бывают Л-формы. Замечательно, что по сравнению с П-листьями Л-листья больше весят, имеют большую площадь, объем, осмотическое давление клеточного сока, скорость роста.

Много интересных фактов может сообщить наука симметрии и о человеке. Как известно, в среднем на земном шаре примерно 3% левшей (99 млн.) и 97% правшей (3 млрд. 201 млн.). По некоторым сведениям, в США и на Африканском континенте левшей значительно больше, чем, например, в СССР.

Интересно отметить, что центры речи в головном мозгу у правшей расположены слева, а у левшей -- справа (по другим данным --в обоих полушариях). Правая половина тела управляется левым, а левая -- правым полушарием, и в большинстве случаев правая половина тела и левое полушарие развиты лучше. У людей, как известно, сердце на левой стороне, печень -- на правой. Но на каждые 7--12 тыс. человек встречаются люди, у которых все или часть внутренних органов расположены зеркально, т. е. наоборот.

Третий вопрос -- это вопрос о свойствах П- и Л-форм. Уже приведенные примеры дают понять, что в живой природе целый ряд свойств у П- и Л-форм неодинаковы. Так, на примерах с моллюсками, фасолью и антибиотиками была показана разница в питании, скорости роста и антибиотической активности у их П- и Л-форм.

Такая черта П- и Л-форм живой природы имеет очень большое значение: она позволяет с совершенно новой стороны резко отличить живые организмы от всех тех П- и Л-тел неживой природы, которые по своим свойствам так или иначе равны, например, от элементарных частиц.

В чем же причина всех этих особенностей диссимметрических тел живой природы?

Было установлено, что, выращивая микроорганизмы бациллюс микоидес на агар-агаре с П- и Л-соединениями (сахарозой, винной кислотой, аминокислотами), Л-колонии его можно превратить в П-, а П- в Л-формы. В ряде случаев эти изменения носили длительный, возможно, наследственный характер. Эти опыты говорят о том, что внешняя П- или Л-форма организмов зависит от обмена веществ и участвующих в этом обмене П- и Л-молекул.

Иногда превращения П- в Л-формы и наоборот происходят без вмешательства человека.

Академик В. И. Вернадский отмечает, что все раковины ископаемых моллюсков фузус антиквуус, найденные в Англии, левые, а современные раковины правые. Очевидно, причины, вызывавшие такие перемены, менялись в течение геологических эпох.

Конечно, смена видов симметрии по мере эволюции жизни происходила не только у диссимметрических организмов. Так, некоторые иглокожие когда-то были двустороннесимметричными подвижными формами. Затем они перешли к сидячему образу жизни и у них выработалась радиальная симметрия (правда, личинки их до сих пор сохранили двустороннюю симметрию). У части иглокожих, вторично перешедших к активному образу жизни, радиальная симметрия вновь заменилась билатеральной (неправильные ежи, голотурии).

До сих пор мы говорили о причинах, определяющих форму П- и Л-организмов и их органов. А почему эти формы встречаются не в равных количествах? Как правило, бывает больше либо П-, либо Л-форм. Причины этого не известны. Согласно одной очень правдоподобной гипотезе причинами могут быть диссимметрические элементарные частицы, например преобладающие в нашем мире правые нейтрино, а также правый свет, который в небольшом избытке всегда существует в рассеянном солнечном свете. Все это первоначально могло создать неодинаковую встречаемость правых и левых форм диссимметрических органических молекул, а затем привести к неодинаковой встречаемости П- и Л-организмов и их частей.

Таковы лишь некоторые вопросы биосимметрики -- науки о процессах симметризации и диссимметризации в живой природе.

Почему у человека некоторые органы - парные (например, легкие, почки), а другие - в одном экземпляре?

Вначале попробуем ответить на вспомогательный вопрос: почему у человека некоторые части тела симметричны, а другие - нет?

Симметрия - базовое свойство большинства живых существ. Быть симметричным очень удобно. Подумайте сами: если у вас совсех сторон есть глаза, уши, носы, рты и конечности, то вы успеете вовремя почувствовать что-то подозрительное, с какой бы стороны оно ни подкрадывалось, и, в зависимости от того, какое оно, это подозрительное, - съесть его или, наоборот, от него удрать.

Самая безупречная, «самая симметричная» из всех симметрий - сферическая , когда у тела не отличаются верхняя, нижняя, правая, левая, передняя и задняя части, и оно совпадает само с собой при повороте вокруг центра симметрии на любой угол. Однако это возможно только в такой среде, которая сама идеально симметрична во всех направлениях и в которой со всех сторон на тело действуют одни и те же силы. Но на нашей земле подобной среды нет. Существует по крайней мере одна сила - сила тяжести, - которая действует только по одной оси (верх-низ) и не влияет на остальные (вперед-назад, вправо-влево). Она всё тянет вниз. И живым существам приходится к этому приспосабливаться.

Так возникает следующий тип симметрии - радиальная . У радиально-симметричных существ есть верхняя и нижняя части, но правой и левой, передней и задней нет. Они совпадают сами с собой при вращении только вокруг одной оси. К ним относятся, например, морские звезды и гидры. Эти создания малоподвижны и занимаются «тихой охотой» за проплывающей мимо живностью.

Но если какое-то существо собирается вести активный образ жизни, гоняясь за жертвами и удирая от хищников, для него приобретает важность еще одно направление - передне-заднее. Та часть тела, которая находится впереди, когда животное двигается, становится более значимой. Сюда «переползают» все органы чувств, а заодно и нервные узлы, которые анализируют полученную от органов чувств информацию (у некоторых счастливчиков эти узлы потом превратятся в головной мозг). К тому же, спереди должен находиться рот, чтобы успеть ухватить настигнутую добычу. Всё это обычно располагается на отдельном участке тела - голове (у радиально-симметричных животных головы нет в принципе). Так возникает билатеральная (или двусторонняя ) симметрия. У билатерально-симметричного существа отличаются верхняя и нижняя, передняя и задняя части, и только правая и левая идентичны и являются зеркальным отображением друг друга. Этот тип симметрии характерен для большинства животных, включая и человека.

У некоторых животных, например у кольчатых червей, помимо билатеральной есть и еще одна симметрия - метамерная . Их тело (за исключением самой передней части) состоит из одинаковых члеников-метамеров, и если сдвигаться вдоль тела, червь сам с собой «совпадает». У более развитых животных, включая человека, сохраняется слабое «эхо» такой симметрии: в каком-то смысле, наши позвонки и рёбра тоже можно назвать метамерами.

Итак, почему у человека есть парные органы, мы разобрались. Теперь обсудим, откуда взялись непарные.

Для начала попробуем понять: что же является осью симметрии для самых простых, радиально симметричных, примитивных многоклеточных? Ответ простой: это пищеварительная система. Вокруг нее и выстраивается весь организм, и организован он так, чтобы каждая клеточка тела находилась близко к «кормушке» и получала достаточное количество питательных веществ. Представим себе гидру : ее рот симметрично окружен щупальцами, которые загоняют туда добычу, а кишечная полость находится в самой середине организма и является осью, вокруг которой формируется всё остальное тело. Пищеварительная система у таких существ одна по определению, потому что «под нее» и выстраивается весь организм.

Постепенно животные усложнялись, и их пищеварительная система тоже становилась всё более совершенной. Кишечник удлинился, чтобы более эффективно переваривать пищу, и поэтому ему пришлось сложиться в несколько раз, чтобы поместиться в брюшной полости. Появились дополнительные органы - печень, желчный пузырь, поджелудочная железа, - которые расположились в организме асимметрично и «подвинули» некоторые другие органы (например, из-за того, что печень расположена справа, правая почка и правый яичник/яичко сдвинуты вниз относительно левого). У человека изо всей пищеварительной системы только рот, глотка, пищевод и анальное отверстие сохранили свое положение на плоскости симметрии организма. Но пищеварительная система и все ее органы так и остались у нас в единственном экземпляре.

Теперь посмотрим на кровеносную систему.

Если животное маленькое, у него нет проблемы с тем, чтобы питательные вещества дошли до каждой клеточки, - ведь все клетки находятся достаточно близко к пищеварительной системе. Но чем больше живое существо, тем острее для него возникает проблема доставки питания до «отдаленных провинций», находящихся на большом расстоянии от кишечника, на периферии тела. Появляется потребность в чём-то, что «кормило» бы эти участки, а кроме этого, соединяло всё тело воедино и позволяло далеко расположенным регионам «общаться» между собой (а у некоторых животных также разносило бы кислород от органов дыхания по всему телу). Так появляется кровеносная система.

Кровеносная система выстраивается вдоль пищеварительной, и поэтому состоит она, в самых примитивных случаях, всего лишь из двух главных сосудов - брюшного и спинного - и нескольких соединяющих их дополнительных. Если существо маленькое и слабоподвижное (как, например, ланцетник), то для того, чтобы кровь двигалась по сосудам, достаточно сокращения самих этих сосудов. Но относительно крупным существам, ведущим более активный образ жизни (например, рыбам), этого мало. Поэтому у них часть брюшного сосуда превращается в специальный мышечный орган, с силой толкающий кровь вперед, - сердце. Поскольку оно возникло на непарном сосуде, то и само оно «одинокое» и непарное. У рыб сердце симметрично само по себе и в теле располагается на плоскости симметрии. Но у наземных животных, в связи с появлением второго круга кровообращения, левая часть сердечной мышцы становится больше правой, и сердце сдвигается в левую сторону, теряя и симметричность своего положения, и свою собственную симметрию.

Вера Башмакова
«Элементы»

Комментарии: 0

    Регулярный ячеистый рисунок можно сделать, если ячейки будут треугольными, квадратными или шестиугольными. Шестиугольная форма больше остальных позволяет сэкономить на стенках, то есть на соты с такими ячейками уйдёт меньше воска. Впервые такую «экономность» пчёл заметили в IV веке н. э., и тогда же было высказано предположение, что пчёлы при постройке сотов «руководствуются математическим планом». Однако, полагают исследователи из Кардиффского университета, инженерная слава пчёл сильно преувеличена: правильная геометрическая форма шестигранных ячеек сотов возникает из-за, действующих на них физических сил, а насекомые тут лишь помощники.

    Предложен вариант непериодичной мозаики, покрывающей плоскость, в котором используются плитки одной формы, но двух различных раскрасок.

    Иэн Стюарт

    На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.

    Каустики - это вездесущие оптические поверхности и кривые, возникающие при отражении и преломлении света. Каустики можно описать как линии или поверхности, вдоль которых концентрируются световые лучи.

    С имметрия (др.-греч. — «соразмерность») — закономерное расположение подобных (одинаковых) частей тела или форм живого организма, совокупности живых организмов относительно центра или оси симметрии. При этом подразумевается, что соразмерность – часть гармонии, правильного сочетания частей целого.

    Г армония - греческое слово, обозначающее «согласованность, соразмерность, единство частей и целого». Внешне гармония может проявляться в мелодии, ритме, симметрии и пропорциональности.

    Во всем царит гармонии закон, И в мире всё суть ритм, аккорд и тон. Дж. Драйден

    С овершенство - высшая степень, предел какого-либо положительного качества, способности, или мастерства.

    «Свобода есть основной внутренний признак каждого существа, сотворенного по образу и подобию Божьему; в этом признаке заключено абсолютное совершенство плана творения». Н. А. Бердяев

    Симметрия – основополагающий принцип устройства мира.

    Симметрия – распространенное явление, ее всеобщность служит эффективным методом познания природы. Симметрия в природе нужна, чтобы сохранять устойчивость. Внутри внешней симметрии лежит внутренняя симметрия построения, гарантирующая равновесие.

    Симметрия – проявление стремления материи к надежности и прочности.

    Симметричные формы обеспечивают повторяемость удачных форм, поэтому более устойчивы к различным воздействиям. Симметрия многообразна.


    В природе и, в частности, в живой природе симметрия не абсолютна и всегда содержит некоторую степень асимметрии. Асимметрия — (греч. α- — «без» и «симметрия») — отсутствие симметрии.

    Симметрия в живой природе

    Симметрия, как и пропорция, почиталась необходимым условием гармонии и красоты.

    Внимательно приглядевшись к природе, можно увидеть общее даже в самых незначительных вещах и деталях, найти проявления симметрии. Форма листа дерева не является случайной: она строго закономерна. Листок как бы склеен из двух более или менее одинаковых половинок, одна из которых расположена зеркально относительно другой. Симметрия листка упорно повторяется, будь то гусеница, бабочка, жучок и т.п.

    На самом верхнем уровне различают три типа симметрии: структурную, динамическую и геометрическую. Каждый из этих типов симметрии на следующем уровне делится на классическую и неклассическую.

    Ниже располагаются следующие иерархические уровни. Графическое изображение всех уровней подчинения даёт разветвлённую дендрограмму.

    В быту мы чаще всего сталкиваемся с так называемой зеркальной симметрией. Это такое строение объектов, когда их можно разделить на правую и левую или верхнюю и нижнюю половины воображаемой осью, называемой осью зеркальной симметрии. При этом половины, находящиеся по разные стороны оси – идентичны друг другу.

    Отражение в плоскости симметрии . Отражение – это наиболее известная и чаще других встречающаяся в природе разновидность симметрии. Зеркало в точности воспроизводит то, что оно "видит", но рассмотренный порядок является обращенным: правая рука у вашего двойника в действительности окажется левой, так как пальцы расположены на ней в обратном порядке. Зеркальную симметрию можно обнаружить повсюду: в листьях и цветах растений. Более того, зеркальная симметрия присуща телам почти всех живых существ, и такое совпадение отнюдь не случайно. Зеркальной симметрией обладает все, допускающее разбиение на две зеркально равные половинки. Каждая из половинок служит зеркальным отражением другой, а разделяющая их плоскость называется плоскостью зеркального отражения, или просто зеркальной плоскостью.

    Поворотная симметрия. Внешний вид узора не изменится, если его повернуть на некоторый угол вокруг оси. Симметрия, возникающая при этом, называется поворотной симметрией. Листья и цветы многих растений обнаруживают радиальную симметрию. Это такая симметрия, при которой лист или цветок, поворачиваясь вокруг оси симметрии, переходит в себя. На поперечных сечениях тканей, образующих корень или стебель растения, отчетливо бывает видна радиальная симметрия. Соцветия многих цветков также обладают радиальной симметрией.

    Радиально-лучевой симметрией обладают цветы, грибы, деревья. Здесь можно отметить, что на не сорванных цветах и грибах, растущих деревьях плоскости симметрии ориентированы всегда вертикально. Определяя пространственную организацию живых организмов, прямой угол организует жизнь силами гравитации. Биосфера (пласт бытия живых существ) ортогональна вертикальной линии земного тяготения. Вертикальные стебли растений, стволы деревьев, горизонтальные поверхности водных пространств и в целом земная кора составляют прямой угол. Прямой угол, лежащий в основе треугольника, правит пространством симметрии подобий, а подобие, как уже говорилось, – есть цель жизни. И сама природа, и первородная часть человека находятся во власти геометрии, подчинены симметрии и как сущности, и как символы. Как бы ни были выстроены объекты природы, каждый имеет свой основной признак, который отображен формой, будь то яблоко, зерно ржи или человек.

    Примеры радиальной симметрии.


    Простейший вид симметрии зеркальная (осевая), возникающая при вращении фигуры вокруг оси симметрии.

    В природе зеркальная симметрия характерна для растений и животных, которые произрастают или двигаются параллельно поверхности Земли. Например, крылья и туловище бабочки можно назвать эталоном зеркальной симметрии.




    Осевая симметрия это результат поворота абсолютно одинаковых элементов вокруг общего центра. При этом они могут располагаться под любым углом и с различной частотой. Главное, чтобы элементы вращались вокруг единого центра. В природе, примеры осевой симметрии чаще всего можно найти среди растений и животных, которые растут или перемещаются перпендикулярно к поверхности Земли.


    Также существует винтовая симметрия .

    Трансляцию можно комбинировать с отражением или поворотом, при этом возникают новые операции симметрии.

    Поворот на определенное число градусов, сопровождаемый трансляцией на расстояние вдоль оси поворота, порождает винтовую симметрию - симметрию винтовой лестницы.

    Пример винтовой симметрии – расположение листьев на стебле многих растений.

    Если рассматривать расположение листьев на ветке дерева мы заметим, что лист отстоит от другого, но и повернут вокруг оси ствола.

    Листья располагаются на стволе по винтовой линии, чтобы не заслонять друг от друга солнечный свет. Головка подсолнечника имеет отростки, расположенные по геометрическим спиралям, раскручивающимся от центра наружу. Самые молодые члены спирали находятся в центре. В таких системах можно заметить два семейства спиралей, раскручивающихся в противоположные стороны и пересекающихся под углами, близкими к прямым.

    Но какими бы интересными и привлекательными ни были проявления симметрии в мире растений, там еще много тайн, управляющих процессами развития. Вслед за Гете, который говорил о стремлении природы к спирали, можно предположить, что движение это осуществляется по логарифмической спирали, начиная всякий раз с центральной, неподвижной точки и сочетая поступательное движение (растяжение) с поворотом вращения.

    На основании этого можно сформулировать в несколько упрощенном и схематизированном виде (из двух пунктов) общий закон симметрии, ярко и повсеместно проявляющийся в природе:

    1. Все, что растет или движется по вертикали, т.е. вверх или вниз относительно земной поверхности, подчиняется радиально-лучевой симметрии в виде веера пересекающихся плоскостей симметрии. Листья и цветы многих растений обнаруживают радиальную симметрию. Это такая симметрия, при которой лист или цветок, поворачиваясь вокруг оси симметрии, переходит в себя. На поперечных сечениях тканей, образующих корень или стебель растения, отчетливо бывает видна радиальная симметрия. Соцветия многих цветков также обладают радиальной симметрией.

    2. Все то, что растет и движется горизонтально или наклонно по отношению к земной поверхности, подчиняется билатеральной симметрии, симметрии листка.

    Этому всеобщему закону из двух постулатов подчиняются не только цветы, животные, легкоподвижные жидкости и газы, но и твердые, неподатливые камни. Этот закон влияет на изменчивые формы облаков. В безветренный день они имеют куполовидную форму с более или менее ясно выраженной радиально-лучевой симметрией. Влияние универсального закона симметрии является по сути дела чисто внешним, грубым, налагающим свою печать только на наружную форму природных тел. Внутреннее их строение и детали ускользают из-под его власти.

    Симметрия основана на подобии. Она означает такое соотношение между элементами, фигурами, когда они повторяют и уравновешивают друг друга.

    Симметрия подобия. Еще один тип симметрии - симметрия подобия, связанная с одновременным увеличением или уменьшением подобных частей фигуры и расстояний между ними. Примером такого рода симметрии служит матрешка. Очень широко распространена такая симметрия в живой природе. Ее демонстрируют все растущие организмы.

    Основой эволюции живой материи является симметрия подобия. Рассмотрим цветок розы или кочан капусты. Важную роль в геометрии всех этих природных тел играет подобие их сходных частей. Такие части, конечно, связаны между собой каким-то общим, еще не известным нам геометрическим законом, позволяющим выводить их друг из друга. Симметрия подобия, осуществляющаяся в пространстве и во времени, повсеместно проявляется в природе на всем, что растет. А ведь именно к растущим формам относятся бесчисленные фигуры растений, животных и кристаллов. Форма древесного ствола – коническая, сильно вытянутая. Ветви обычно располагаются вокруг ствола по винтовой линии. Это не простая винтовая линия: она постепенно сужается к вершине. Да и сами ветви уменьшаются по мере приближения к вершине дерева. Следовательно, здесь мы имеем дело с винтовой осью симметрии подобия.

    Живая природа в любых ее проявлениях обнаруживает одну и ту же цель, один и тот же смысл жизни: всякий живой предмет повторяет себя в себе подобном. Главной задачей жизни является жизнь, а доступная форма бытия заключается в существовании отдельных целостных организмов. И не только примитивные организации, но и сложные космические системы, такие как человек, демонстрируют поразительную способность буквально повторять из поколения в поколение одни и те же формы, одни и те же скульптуры, черты характера, те же жесты, манеры.

    Природа обнаруживает подобие как свою глобальную генетическую программу. Ключ в изменении тоже заключается в подобии. Подобие правит живой природой в целом. Геометрическое подобие – общий принцип пространственной организации живых структур. Лист клена подобен листу клена, березы – листу березы. Геометрическое подобие пронизывает все ветви древа жизни. Какие бы метаморфозы ни претерпевала в процессе роста в дальнейшем живая клетка, принадлежащая целостному организму и выполняющая функцию его воспроизведения в новый, особенный, единичный объект бытия, она является точкой "начала", которая в итоге деления окажется преобразована в объект, подобный первоначальному. Этим объединяются все виды живых структур, по этой причине и существуют стереотипы жизни: человек, кошка, стрекоза, дождевой червь. Они бесконечно интерпретируются и варьируются механизмами деления, но остаются теми же стереотипами организации, формы и поведения.

    Для живых организмов симметричное расположение частей органов тела помогает сохранять им равновесие при передвижении и функционировании, обеспечивает их жизнестойкость и лучшее приспособление к окружающему миру, что справедливо и в растительном мире. Например, ствол ели или сосны чаще всего прямой и ветви равномерно расположены относительно ствола. Дерево, развиваясь в условиях действия силы тяжести, достигает устойчивого положения. К вершине дерева ветви его становятся меньше в размерах – оно приобретает форму конуса, поскольку на нижние ветви, как и на верхние, должен падать свет. Кроме того, центр тяжести должен быть как можно ниже, от этого зависит устойчивость дерева. Законы естественного отбора и всемирного тяготения способствовали тому, что дерево не только эстетически красиво, но устроено целесообразно.

    Получается, что симметрия живых организмов связана с симметрией законов природы. На житейском уровне, когда мы видим проявление симметрии в живой и неживой природе, то невольно испытываем чувство удовлетворения тем всеобщим, как нам кажется, порядком, который царит в природе.

    По мере упорядочения живых организмов, их усложнения в ходе развития жизни асимметрия все больше и больше превалирует над симметрией, вытесняя ее из биохимических и физиологических процессов. Однако и здесь имеет место динамический процесс: симметрия и асимметрия в функционировании живых организмов тесно связаны. Внешне человек и животные симметричны, однако их внутреннее строение существенно асимметрично. Если у низших биологических объектов, например низших растений, размножение идет симметрично, то у высших имеет место явная асимметрия, например разделение полов, где каждый пол вносит в процесс самовоспроизведения свойственную только ему генетическую информацию. Так, устойчивое сохранение наследственности есть проявление в известном смысле симметрии, а в изменчивости проявляется асимметрия. В целом же глубокая внутренняя связь симметрии и асимметрии в живой природе обусловливает ее возникновение, существование и развитие.

    Вселенная есть асимметричное целое, и жизнь в таком виде, в каком она представляется, должна быть функцией асимметрии Вселенной и вытекающих отсюда следствий. В отличие от молекул неживой природы молекулы органических веществ имеют ярко выраженный асимметричный характер (хиральность). Придавая большое значение асимметрии живого вещества, Пастер считал ее именно той единственной, четко разграничивающей линией, которую в настоящее время можно провести между живой и неживой природой, т.е. тем, что отличает живое вещество от неживого. Современная наука доказала, что в живых организмах, как и в кристаллах, изменениям в строении отвечают изменения свойств.

    Предполагают, что возникшая асимметрия произошла скачком в результате Большого Биологического Взрыва (по аналогии с Большим Взрывом, в результате которого образовалась Вселенная) под действием радиации, температуры, электромагнитных полей и т.д. и нашла свое отражение в генах живых организмов. Этот процесс, по существу, также является процессом самоорганизации.

    Введение 2

    Симметрия в природе 3

    Симметрия у растений 3

    Симметрия у животных 4

    Симметрия у человека 5

    Типы симметрии у животных 5

    Типы симметрии 6

    Зеркальная симметрия 7

    Радиальная симметрия 8

    Поворотная симметрия 10

    Винтовая или спиральная симметрия 10

    Заключение 12

    Источники 13

    «...быть прекрасным значит быть симметричным и соразмерным»

    Платон

    Введение

    Если внимательно присмотреться ко всему, что нас окружает, то можно заметить, что мы живём в довольно-таки симметричном мире . Все живые организмы в той или иной степени отвечают законам симметрии: люди, животные, рыбы, птицы, насекомые – всё построено по её законам. Симметричны снежинки, кристаллы, листья, плоды, даже наша шарообразная планета обладает почти идеальной симметрией.

    Симме́три́я (др.-гр. συμμετρία – симметрия) – сохранение свойств расположения элементов фигуры относительно центра или оси симметрии в неизменном состоянии при каких-либо преобразованиях.

    Слово «симметрия» знакомо нам с детства. Глядя в зеркало, мы видим симметричные половинки лица, глядя на ладошки, мы тоже видим зеркально-симметричные объекты. Взяв в руку цветок ромашки, мы убеждаемся, что путём поворотов её вокруг стебелька, можно добиться совмещения разных частей цветка. Это уже другой тип симметрии: поворотный. Существует большое количество типов симметрии, но все они неизменно отвечают одному общему правилу: при некотором преобразовании симметричный объект неизменно совмещается сам с собой.

    Природа не терпит точной симметрии . Всегда есть хотя бы незначительные отклонения. Так, наши руки, ноги, глаза и уши не полностью идентичны друг другу, пусть и очень похожи. И так для каждого объекта. Природа создавалась не по принципу однотипности, а по принципу согласованности, соразмерности. Именно соразмерность является древним значением слова «симметрия». Философы античности считали симметрию и порядок сущностью прекрасного. Архитекторы, художники и музыканты с древнейших времён знали и пользовались законами симметрии. И в то же время лёгкое нарушение этих законов может придать объектам неповторимый шарм и прямо-таки волшебное очарование. Так, именно лёгкой асимметрией некоторые искусствоведы объясняют красоту и магнетизм таинственной улыбки Джоконды Леонардо да Винчи.

    Симметрия порождает гармонию, которая воспринимается нашим мозгом, как необходимый атрибут прекрасного. А значит, даже наше сознание живёт по законам симметричного мира.

    Согласно же Вейлю, симметричным называется такой предмет, с которым можно проделать какую-то операцию, получив в итоге первоначальное состояние.

    Симметрия в биологии - закономерное расположение подобных (одинаковых) частей тела или форм живого организма, совокупности живых организмов относительно центра или оси симметрии.

    Симметрия в природе

    Симметрией обладают объекты и явления живой природы. Она позволяет живым организмам лучше приспособиться к среде обитания и просто выжить.

    В живой природе огромное большинство живых организмов обнаруживает различные виды симметрий (формы, подобия, относительного расположения). Причем организмы разного анатомического строения могут иметь один и тот же тип внешней симметрии.

    Внешняя симметрия может выступить в качестве основания классификации организмов (сферическая, радиальная, осевая и т.д.) Микроорганизмы, живущие в условиях слабого воздействия гравитации, имеют ярко выраженную симметрию формы.

    На явления симметрии в живой природе обратили внимание ещё в Древней Греции пифагорейцы в связи с развитием учения о гармонии (V век до н.э.). В XIX веке появились единичные работы, посвящённые симметрии в растительном и животном мире.

    В XX веке усилиями российских учёных – В Беклемишева, В. Вернадского, В Алпатова, Г. Гаузе – было создано новое направление в учении о симметрии – биосимметрика, которое, исследуя симметрии биоструктур на молекулярном и надмолекулярном уровнях, позволяет заранее определить возможные варианты симметрии в биообъектах, строго описывать внешнюю форму и внутреннее строение любых организмов.

    Симметрия у растений

    Специфика строения растений и животных определяется особенностями среды обитания, к которой они приспосабливаются, особенностями их образа жизни.

    Для растений характерна симметрия конуса, которая хорошо видна на примере любого дерева. У любого дерева есть основание и вершина, "верх" и "низ", выполняющие разные функции. Значимость различия верхней и нижней частей, а также направление силы тяжести определяют вертикальную ориентацию поворотной оси "древесного конуса" и плоскостей симметрии. Дерево поглощает из почвы влагу и питательные вещества за счёт корневой системы, то есть внизу, а остальные жизненно важные функции выполняются кроной, то есть наверху. Поэтому направления "вверх" и "вниз" для дерева, существенно различны. А направления в плоскости, перпендикулярной к вертикали, для дерева фактически неразличимы: по всем этим направлениям к дереву в равной мере поступают воздух, свет, и влага. В результате появляется вертикальная поворотная ось и вертикальная плоскость симметрии.

    У цветковых растений в большинстве проявляется радиальная и билатеральная симметрия. Цветок считается симметричным, когда каждый околоцветник состоит из равного числа частей. Цветки, имея парные части, считаются цветками с двойной симметрией и т.д. Тройная симметрия обычна для однодольных растений, пятерная – для двудольных.

    Для листьев характерна зеркальная симметрия. Эта же симметрия встречается и у цветов, однако у них зеркальная симметрия чаще выступает в сочетании с поворотной симметрией. Нередки случаи и переносной симметрии (веточки акации, рябины). Интересно, что в цветочном мире наиболее распространена поворотная симметрия 5-го порядка, которая принципиально невозможна в периодических структурах неживой природы. Этот факт академик Н. Белов объясняет тем, что ось 5-го порядка – своеобразный инструмент борьбы за существование, "страховка против окаменения, кристаллизации, первым шагом которой была бы их поимка решеткой". Действительно, живой организм не имеет кристаллического строения в том смысле, что даже отдельные его органы не обладают пространственной решеткой. Однако упорядоченные структуры в ней представлены очень широко.

    Симметрия у животных

    Под симметрией у животных понимают соответствие в размерах, форме и очертаниях, а также относительное расположение частей тела, находящихся на противоположных сторонах разделяющей линии.

    Сферическая симметрия имеет место у радиолярий и солнечников, тела которых сферической формы, а части распределены вокруг центра сферы и отходят от неё. У таких организмов нет ни передней, ни задней, ни боковых частей тела, любая плоскость, проведённая через центр, делит животное на одинаковые половинки.

    При радиальной или лучистой симметрии тело имеет форму короткого или длинного цилиндра либо сосуда с центральной осью, от которого отходят в радиальном порядке части тела. Это кишечнополостные, иглокожие, морские звёзды.

    При зеркальной симметрии осей симметрии три, но симметричных сторон только одна пара. Потому что две другие стороны – брюшная и спинная – друг на друга не похожи. Этот вид симметрии характерен для большинства животных, в том числе насекомых, рыб, земноводных, рептилий, птиц, млекопитающих.

    Для насекомых, рыб, птиц, животных характерно несовместимое с поворотной симметрией различие между направлениями «вперед» и «назад». Придуманный в известной сказке о докторе Айболите фантастический Тянитолкай представляется совершенно невероятным существом, поскольку у него симметричны передняя и задняя половины. Направление движения является принципиально выделенным направлением, относительно которого нет симметрии у любого насекомого, любой рыбы или птицы, любого животного. В этом направлении животное устремляется за пищей, в этом же направлении оно спасается от преследователей.

    Кроме направления движения, симметрию живых существ определяет еще одно направление – направление силы тяжести. Оба направления существенны; они задают плоскость симметрии живого существа.

    Билатеральная (зеркальная) симметрия – характерная симметрия всех представителей животного мира. Эта симметрия хорошо видна у бабочки; симметрия левого и правого проявляется здесь с почти математической строгостью. Можно сказать, что каждое животное (а также насекомое, рыба, птица) состоит из двух энантиоморфов – правой и левой половин. Энантиоморфами являются также парные детали, одна из которых попадает в правую, а другая в левую половину тела животного. Так, энантиоморфами являются правое и левое ухо, правый и левый глаз, правый и левый рог и т.д.

    Симметрия у человека

    Человеческое тело обладает билатеральной симметрией (внешний облик и строение скелета). Эта симметрия всегда являлась и является основным источником нашего эстетического восхищения хорошо сложенным человеческим телом. Тело человека построено по принципу двусторонней симметрии.

    Большинство из нас рассматривает мозг как единую структуру, в действительности он разделён на две половины. Эти две части – два полушария – плотно прилегают друг к другу. В полном соответствии с общей симметрией тела человека каждое полушарие представляет собой почти точное зеркальное отображение другого

    Управление основными движениями тела человека и его сенсорными функциями равномерно распределено между двумя полушариями мозга. Левое полушарие контролирует правую сторону мозга, а правое - левую сторону.

    Физическая симметрия тела и мозга не означает, что правая сторона и левая равноценны во всех отношениях. Достаточно обратить внимание на действия наших рук, чтобы увидеть начальные признаки функциональной симметрии. Лишь немногие люди одинаково владеют обеими руками; большинство же имеет ведущую руку.

    Типы симметрии у животных

      центральная

      осевая (зеркальная)

      радиальная

      билатеральная

      двулучевая

      поступательная (метамерия)

      поступательно-вращательная

    Типы симметрии

    Известны всего два основных типа симметрии – вращательная и поступательная. Кроме того, встречается модификация из совмещения этих двух основных типов симметрии – вращательно-поступательная симметрия.

    Вращательная симметрия. Любой организм обладает вращательной симметрией. Для вращательной симметрии существенным характерным элементом являются антимеры. Важно знать, при повороте на какой-либо градус контуры тела совпадут с исходным положением. Минимальный градус совпадения контура имеет шар, вращающийся около центра симметрии. Максимальный градус поворота 360 0 , когда при повороте на эту величину контуры тела совпадут. Если тело вращается вокруг центра симметрии, то через центр симметрии можно провести множество осей и плоскостей симметрии. Если тело вращается вокруг одной гетерополярной оси, то через эту ось можно провести столько плоскостей, сколько антимер имеет данное тело. В зависимости от этого условия говорят о вращательной симметрии определённого порядка. Например, у шестилучевых кораллов будет вращательная симметрия шестого порядка. У гребневиков две плоскости симметрии, и они имеют симметрию второго порядка. Симметрию гребневиков также называют двулучевой. Наконец, если организм имеет только одну плоскость симметрии и соответственно две антимеры, то такую симметрию называют двусторонней или билатеральной. Лучеобразно отходят тонкие иглы. Это помогает простейшим «парить» в толще воды. Шарообразны и другие представители простейших – лучевики (радиолярии) и солнечники с лучевидными отростками-псевдоподиями.

    Поступательная симметрия. Для поступательной симметрии характерным элементом являются метамеры (meta – один за другим; mer – часть). В этом случае части тела расположены не зеркально друг против друга, а последовательно друг за другом вдоль главной оси тела.

    Метамерия – одна из форм поступательной симметрии. Она особенно ярко выражена у кольчатых червей, длинное тело которых состоит из большого числа почти одинаковых сегментов. Этот случай сегментации называют гомономной. У членистоногих животных число сегментов может быть относительно небольшим, но каждый сегмент несколько отличается от соседних или формой, или придатками (грудные сегменты с ногами или крыльями, брюшные сегменты). Такую сегментацию называют гетерономной.

    Вращательно-поступательная симметрия . Этот тип симметрии имеет ограниченное распространение в животном мире. Эта симметрия характерна тем, что при повороте на определённый угол часть тела немного проступает вперед и её размеры каждый следующий логарифмически увеличивает на определённую величину. Таким образом, происходит совмещение актов вращения и поступательного движения. Примером могут служить спиральные камерные раковины фораминифер, а также спиральные камерные раковины некоторых головоногих моллюсков. С некоторым условием к этой группе можно отнести также и некамерные спиральные раковины брюхоногих моллюсков

    М.: Мысль, 1974г. Хорошавина С.Г. концепции современного...